Classification of Motor Imagery Using Trial Extension in Spatial Domain with Rhythmic Components of EEG
Electrical activities of the human brain can be recorded with electroencephalography (EEG). To characterize motor imagery (MI) tasks for brain–computer interface (BCI) implementation is an easy and cost-effective tool. The MI task is represented by a short-time trial of multichannel EEG. In this pap...
Egile Nagusiak: | Md. Khademul Islam Molla, Sakir Ahamed, Ahmed M. M. Almassri, Hiroaki Wagatsuma |
---|---|
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
MDPI AG
2023-09-01
|
Saila: | Mathematics |
Gaiak: | |
Sarrera elektronikoa: | https://www.mdpi.com/2227-7390/11/17/3801 |
Antzeko izenburuak
-
Discriminative Feature Selection-Based Motor Imagery Classification Using EEG Signal
nork: Md. Khademul Islam Molla, et al.
Argitaratua: (2020-01-01) -
Trial Regeneration With Subband Signals for Motor Imagery Classification in BCI Paradigm
nork: Md. Khademul Islam Molla, et al.
Argitaratua: (2021-01-01) -
Motor Imagery Classification Using Effective Channel Selection of Multichannel EEG
nork: Abdullah Al Shiam, et al.
Argitaratua: (2024-05-01) -
Emotion Recognition Using Narrowband Spatial Features of Electroencephalography
nork: Iffat Farhana, et al.
Argitaratua: (2023-01-01) -
MILimbEEG: A dataset of EEG signals related to upper and lower limb execution of motor and motor imagery tasks
nork: Víctor Asanza, et al.
Argitaratua: (2023-10-01)