High temperature oxidation behavior of refractory high entropy alloys NbMoTaWTi/Zr

Refractory high entropy alloys NbMoTaWTi and NbMoTaWZr were prepared by vacuum arc melting.The microstructure and component distribution characteristics were analyzed, and the dynamic behavior during room temperature to 1500℃, as well as the isothermal oxidation behavior at 1200℃ were studied. Resul...

Full description

Bibliographic Details
Main Authors: WANG Xin, WAN Yi-xing, ZHANG Ping, SHAN Cai-xia, XIE Ying-ying, LIANG Xiu-bing
Format: Article
Language:zho
Published: Journal of Materials Engineering 2021-12-01
Series:Cailiao gongcheng
Subjects:
Online Access:http://jme.biam.ac.cn/CN/10.11868/j.issn.1001-4381.2020.000917
Description
Summary:Refractory high entropy alloys NbMoTaWTi and NbMoTaWZr were prepared by vacuum arc melting.The microstructure and component distribution characteristics were analyzed, and the dynamic behavior during room temperature to 1500℃, as well as the isothermal oxidation behavior at 1200℃ were studied. Results reveal that NbMoTaWTi mainly consists of single body-centred cubic (BCC) phase, and NbMoTaWZr is composed of BCC and Zr-rich phases.These two alloys are both seriously oxidized above 700℃. Comparatively, NbMoTaWTi alloy is superior to NbMoTaWZr in antioxidation below 1300℃.For both two alloys, the oxygen diffusion inward mainly occurs during isothermal oxidation at 1200℃ and catastrophic oxidation takes place after 3 h. The Ti and Zr addition cannot cause selective oxidation. Although these two elements form a composite oxide layer with other refractory metal oxides, the density and the ability to prevent oxidation is not enough.
ISSN:1001-4381