Immune cells and their inflammatory mediators modify β cells and cause checkpoint inhibitor–induced diabetes

Checkpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentiall...

Full description

Bibliographic Details
Main Authors: Ana Luisa Perdigoto, Songyan Deng, Katherine C. Du, Manik Kuchroo, Daniel B. Burkhardt, Alexander Tong, Gary Israel, Marie E. Robert, Stuart P. Weisberg, Nancy Kirkiles-Smith, Angeliki M. Stamatouli, Harriet M. Kluger, Zoe Quandt, Arabella Young, Mei-Ling Yang, Mark J. Mamula, Jordan S. Pober, Mark S. Anderson, Smita Krishnaswamy, Kevan C. Herold
Format: Article
Language:English
Published: American Society for Clinical investigation 2022-09-01
Series:JCI Insight
Subjects:
Online Access:https://doi.org/10.1172/jci.insight.156330
Description
Summary:Checkpoint inhibitors (CPIs) targeting programmed death 1 (PD-1)/programmed death ligand 1 (PD-L1) and cytotoxic T lymphocyte antigen 4 (CTLA-4) have revolutionized cancer treatment but can trigger autoimmune complications, including CPI-induced diabetes mellitus (CPI-DM), which occurs preferentially with PD-1 blockade. We found evidence of pancreatic inflammation in patients with CPI-DM with shrinkage of pancreases, increased pancreatic enzymes, and in a case from a patient who died with CPI-DM, peri-islet lymphocytic infiltration. In the NOD mouse model, anti–PD-L1 but not anti–CTLA-4 induced diabetes rapidly. RNA sequencing revealed that cytolytic IFN-γ+CD8+ T cells infiltrated islets with anti–PD-L1. Changes in β cells were predominantly driven by IFN-γ and TNF-α and included induction of a potentially novel β cell population with transcriptional changes suggesting dedifferentiation. IFN-γ increased checkpoint ligand expression and activated apoptosis pathways in human β cells in vitro. Treatment with anti–IFN-γ and anti–TNF-α prevented CPI-DM in anti–PD-L1–treated NOD mice. CPIs targeting the PD-1/PD-L1 pathway resulted in transcriptional changes in β cells and immune infiltrates that may lead to the development of diabetes. Inhibition of inflammatory cytokines can prevent CPI-DM, suggesting a strategy for clinical application to prevent this complication.
ISSN:2379-3708