A SVM-3D Based Encoderless Control of a Fault-Tolerant PMSM Drive

This paper exhibits a novel technique to obtain an encoderless speed control of a permanent magnet synchronous motor (PMSM) in the case of a loss of one phase. The importance of this work is that it presents solutions in order to maintain the operation of the system in various conditions. This will...

Full description

Bibliographic Details
Main Authors: Kamel Saleh, Mark Sumner
Format: Article
Language:English
Published: MDPI AG 2020-07-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/9/7/1095
Description
Summary:This paper exhibits a novel technique to obtain an encoderless speed control of a permanent magnet synchronous motor (PMSM) in the case of a loss of one phase. The importance of this work is that it presents solutions in order to maintain the operation of the system in various conditions. This will increase the reliability of the whole drive system to meet the safety issues required in some applications. To achieve that, a fault-tolerant inverter modulated through a 3-dimension space vector pulse width modulation technique (3D-SVPWM) is used. Besides that, an algorithm to obtain the exact position of the saturation saliency in the case of a loss of one phase is introduced to achieve a closed-loop field-oriented encoderless speed control and to further enhance the reliability of the whole drive system. This algorithm is based on measuring the transient stator current responses of the motor due to the insulated-gate bipolar transistors (IGBTs) switching actions. Then according to the operating condition (normal or a loss of one phase), the saliency position signals are constructed from the dynamic current responses. Simulation results are provided to demonstrate the effectiveness of the saliency tracking technique under normal and under a loss of one phase conditions. Moreover, the results verify the maximum reliability for the whole drive system that is achieved in this work through a continuous operation of the drive system under a loss of one phase condition and under encoderless speed control.
ISSN:2079-9292