Dimension reduction graph‐based sparse subspace clustering for intelligent fault identification of rolling element bearings
Abstract Sparse subspace clustering (SSC) is a spectral clustering methodology. Since high‐dimensional data are often dispersed over the union of many low‐dimensional subspaces, their representation in a suitable dictionary is sparse. Therefore, SSC is an effective technology for diagnosing mechanic...
Hlavní autoři: | Le Zhao, Shaopu Yang, Yongqiang Liu |
---|---|
Médium: | Článek |
Jazyk: | English |
Vydáno: |
Wiley
2021-12-01
|
Edice: | International Journal of Mechanical System Dynamics |
Témata: | |
On-line přístup: | https://doi.org/10.1002/msd2.12019 |
Podobné jednotky
-
Sparse Subspace Learning Based on Learnable Constraints for Image Clustering
Autor: Siyuan Zhao
Vydáno: (2023-01-01) -
Sparse Subspace Clustering for Stream Data
Autor: Ken Chen, a další
Vydáno: (2021-01-01) -
Accelerated Stochastic Variance Reduction Gradient Algorithms for Robust Subspace Clustering
Autor: Hongying Liu, a další
Vydáno: (2024-06-01) -
A Nonconvex Implementation of Sparse Subspace Clustering: Algorithm and Convergence Analysis
Autor: Xiaoge Deng, a další
Vydáno: (2020-01-01) -
Sparse and Low-Rank Subspace Data Clustering with Manifold Regularization Learned by Local Linear Embedding
Autor: Ye Yang, a další
Vydáno: (2018-11-01)