Dimension reduction graph‐based sparse subspace clustering for intelligent fault identification of rolling element bearings
Abstract Sparse subspace clustering (SSC) is a spectral clustering methodology. Since high‐dimensional data are often dispersed over the union of many low‐dimensional subspaces, their representation in a suitable dictionary is sparse. Therefore, SSC is an effective technology for diagnosing mechanic...
Main Authors: | Le Zhao, Shaopu Yang, Yongqiang Liu |
---|---|
格式: | Article |
語言: | English |
出版: |
Wiley
2021-12-01
|
叢編: | International Journal of Mechanical System Dynamics |
主題: | |
在線閱讀: | https://doi.org/10.1002/msd2.12019 |
相似書籍
-
Sparse Subspace Learning Based on Learnable Constraints for Image Clustering
由: Siyuan Zhao
出版: (2023-01-01) -
Sparse Subspace Clustering for Stream Data
由: Ken Chen, et al.
出版: (2021-01-01) -
Accelerated Stochastic Variance Reduction Gradient Algorithms for Robust Subspace Clustering
由: Hongying Liu, et al.
出版: (2024-06-01) -
A Nonconvex Implementation of Sparse Subspace Clustering: Algorithm and Convergence Analysis
由: Xiaoge Deng, et al.
出版: (2020-01-01) -
A General Approach for Achieving Supervised Subspace Learning in Sparse Representation
由: Jianshun Sang, et al.
出版: (2019-01-01)