Mullite-2<i>c</i> – a natural polytype of mullite

<p>A single crystal (<span class="inline-formula">∼</span>&thinsp;20&thinsp;<span class="inline-formula">µ</span>m&thinsp;<span class="inline-formula">×</span>&thinsp;20&thinsp;<span class="inline-for...

Full description

Bibliographic Details
Main Authors: S. Lenz, J. Birkenstock, L. A. Fischer, H. Schneider, R. X. Fischer
Format: Article
Language:English
Published: Copernicus Publications 2020-03-01
Series:European Journal of Mineralogy
Online Access:https://ejm.copernicus.org/articles/32/235/2020/ejm-32-235-2020.pdf
Description
Summary:<p>A single crystal (<span class="inline-formula">∼</span>&thinsp;20&thinsp;<span class="inline-formula">µ</span>m&thinsp;<span class="inline-formula">×</span>&thinsp;20&thinsp;<span class="inline-formula">µ</span>m&thinsp;<span class="inline-formula">×</span>&thinsp;330&thinsp;<span class="inline-formula">µ</span>m) of mullite-2<span class="inline-formula"><i>c</i></span>, a natural polytype of mullite, was separated from a radially grown cluster of acicular crystals from Ettringer Bellerberg (Quarternary Eifel volcanic fields, Germany). The chemical composition determined from electron microprobe analysis (EMPA) is <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M10" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msub><mi mathvariant="normal">Na</mi><mn mathvariant="normal">0.01</mn></msub><msub><mi mathvariant="normal">Mg</mi><mn mathvariant="normal">0.05</mn></msub><msub><mi mathvariant="normal">Al</mi><mn mathvariant="normal">8.52</mn></msub><msubsup><mi mathvariant="normal">Fe</mi><mn mathvariant="normal">0.29</mn><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup><msub><mi mathvariant="normal">Si</mi><mn mathvariant="normal">3.13</mn></msub><msub><mi mathvariant="normal">Ti</mi><mn mathvariant="normal">0.02</mn></msub><msub><mi mathvariant="normal">O</mi><mn mathvariant="normal">19.55</mn></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="197pt" height="17pt" class="svg-formula" dspmath="mathimg" md5hash="c50cca7629249c7ad5e395c36083603f"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-235-2020-ie00001.svg" width="197pt" height="17pt" src="ejm-32-235-2020-ie00001.png"/></svg:svg></span></span>, corresponding to <span class="inline-formula"><i>x</i>=0.22(8)</span> in the generalised mineral formula <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M12" display="inline" overflow="scroll" dspmath="mathml"><mrow class="chem"><msubsup><mi mathvariant="normal">M</mi><mi>y</mi><mo>+</mo></msubsup><msubsup><mi mathvariant="normal">Mg</mi><mi>z</mi><mrow><mn mathvariant="normal">2</mn><mo>+</mo></mrow></msubsup><msubsup><mi mathvariant="normal">M</mi><mrow><mn mathvariant="normal">8</mn><mo>+</mo><mn mathvariant="normal">4</mn><mi>x</mi><mo>+</mo><mi>y</mi><mo>-</mo><mn mathvariant="normal">2</mn><mi>z</mi></mrow><mrow><mn mathvariant="normal">3</mn><mo>+</mo></mrow></msubsup><msubsup><mi mathvariant="normal">M</mi><mrow><mn mathvariant="normal">4</mn><mo>-</mo><mn mathvariant="normal">4</mn><mi>x</mi><mo>-</mo><mi>y</mi><mo>+</mo><mi>z</mi></mrow><mrow><mn mathvariant="normal">4</mn><mo>+</mo></mrow></msubsup><msub><mi mathvariant="normal">O</mi><mrow><mn mathvariant="normal">20</mn><mo>-</mo><mn mathvariant="normal">2</mn><mi>x</mi></mrow></msub></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="178pt" height="18pt" class="svg-formula" dspmath="mathimg" md5hash="519e8c7792d94a260628f24967e14818"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="ejm-32-235-2020-ie00002.svg" width="178pt" height="18pt" src="ejm-32-235-2020-ie00002.png"/></svg:svg></span></span>. Only <span class="inline-formula">Fe<sup>3+</sup></span> as foreign cation was considered in the refined structure model, partially replacing <span class="inline-formula">Al<sup>3+</sup></span> in the octahedral chains. A crystal of a similar type, though exhibiting a significantly different composition with <span class="inline-formula"><i>x</i>=0.02</span>, was first described in 2015, tentatively named “sillimullite” by Fischer et al. (2015). This crystal and our new sample have similar structural properties, now classified as a polytype of mullite, designated mullite-2<span class="inline-formula"><i>c</i></span>. Single-crystal X-ray diffraction showed that the mullite-2<span class="inline-formula"><i>c</i></span> crystal investigated here exhibits partial Si&thinsp;<span class="inline-formula">∕</span>&thinsp;Al ordering in the double chains of <span class="inline-formula">(Si,Al)O<sub>4</sub></span> tetrahedra in contrast to the sample described in 2015 as being completely ordered. The ordering in mullite-2<span class="inline-formula"><i>c</i></span> results in a doubled <span class="inline-formula"><i>c</i></span> lattice parameter with respect to mullite. It crystallises in space group <i>Pnam</i>, with cell parameters for the new sample of <span class="inline-formula"><i>a</i>=7.5432(5)</span>&thinsp;Å, <span class="inline-formula"><i>b</i>=7.7048(5)</span>&thinsp;Å, <span class="inline-formula"><i>c</i>=5.7965(3)</span>&thinsp;Å, <span class="inline-formula"><i>V</i>=336.89(6)</span>&thinsp;Å<span class="inline-formula"><sup>3</sup></span> and <span class="inline-formula"><i>Z</i>=1</span>. X-ray powder diffraction data are presented with a detailed discussion of the differences between the diffraction patterns of sillimanite, mullite and mullite-2<span class="inline-formula"><i>c</i></span>. Crystals of mullite-2<span class="inline-formula"><i>c</i></span> are translucent to lightly violet, they possess a vitreous lustre and the calculated density is 3.199&thinsp;g&thinsp;cm<span class="inline-formula"><sup>−3</sup></span>. The optical character is biaxial (<span class="inline-formula">+</span>), with refractive indices determined by spindle-stage microscopy of <span class="inline-formula"><i>n</i><sub><i>x</i></sub>=1.6673</span>, <span class="inline-formula"><i>n</i><sub><i>y</i></sub>=1.6687</span> and <span class="inline-formula"><i>n</i><sub><i>z</i></sub>=1.680(4)</span> (adjusted to conform to <span class="inline-formula">2<i>V</i><sub><i>Z</i></sub>=39(4)</span><span class="inline-formula"><sup>∘</sup></span>). Applying the Gladstone–Dale approach, the compatibility index is 0.007, representing superior compatibility. In terms of chemical composition and structural features mullite-2<span class="inline-formula"><i>c</i></span> is an outstanding example of mullite-type compounds falling into the postulated miscibility gap between sillimanite and mullite. Its crystal structure combines characteristics from both mullite (oxygen vacancies, triclusters of tetrahedral building units) and sillimanite (high degree of Si&thinsp;<span class="inline-formula">∕</span>&thinsp;Al ordering in the tetrahedral building units, causing the doubled <span class="inline-formula"><i>c</i></span> parameter). The lattice parameters (normalised to 1<span class="inline-formula"><i>c</i></span>) of the new sample lie between those of sillimanite and 3&thinsp;/&thinsp;2 mullite; the chemical composition is close to 3&thinsp;/&thinsp;2 mullite and thus differs significantly from the silica-rich composition of the species previously determined by Fischer et al. (2015), indicating a relatively large compositional variation.</p>
ISSN:0935-1221
1617-4011