Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth

We consider a nonlinear elliptic problem driven by the Dirichlet $p$-Laplacian and a reaction term which depends also on the gradient (convection). No growth condition is imposed on the reaction term $f(z, \cdot,y)$. Using topological tools and the asymptotic analysis of a family of perturbed prob...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Nikolaos Papageorgiou, Calogero Vetro, Francesca Vetro
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: University of Szeged 2018-04-01
Σειρά:Electronic Journal of Qualitative Theory of Differential Equations
Θέματα:
Διαθέσιμο Online:http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6310
_version_ 1827951187828146176
author Nikolaos Papageorgiou
Calogero Vetro
Francesca Vetro
author_facet Nikolaos Papageorgiou
Calogero Vetro
Francesca Vetro
author_sort Nikolaos Papageorgiou
collection DOAJ
description We consider a nonlinear elliptic problem driven by the Dirichlet $p$-Laplacian and a reaction term which depends also on the gradient (convection). No growth condition is imposed on the reaction term $f(z, \cdot,y)$. Using topological tools and the asymptotic analysis of a family of perturbed problems, we prove the existence of a positive smooth solution.
first_indexed 2024-04-09T13:37:52Z
format Article
id doaj.art-f981fd9cd7ad4f6883b0bd12ed4c5512
institution Directory Open Access Journal
issn 1417-3875
language English
last_indexed 2024-04-09T13:37:52Z
publishDate 2018-04-01
publisher University of Szeged
record_format Article
series Electronic Journal of Qualitative Theory of Differential Equations
spelling doaj.art-f981fd9cd7ad4f6883b0bd12ed4c55122023-05-09T07:53:08ZengUniversity of SzegedElectronic Journal of Qualitative Theory of Differential Equations1417-38752018-04-012018181910.14232/ejqtde.2018.1.186310Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growthNikolaos Papageorgiou0Calogero Vetro1Francesca Vetro2National Techiniacal University of Athens, GreeceUniversity of Palermo, Palermo, ItalyUniversity of Palermo, Palermo, ItalyWe consider a nonlinear elliptic problem driven by the Dirichlet $p$-Laplacian and a reaction term which depends also on the gradient (convection). No growth condition is imposed on the reaction term $f(z, \cdot,y)$. Using topological tools and the asymptotic analysis of a family of perturbed problems, we prove the existence of a positive smooth solution.http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6310convection reaction termnonlinear regularitynonlinear maximum principlepseudomonotone mappicone identityhartman condition
spellingShingle Nikolaos Papageorgiou
Calogero Vetro
Francesca Vetro
Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
Electronic Journal of Qualitative Theory of Differential Equations
convection reaction term
nonlinear regularity
nonlinear maximum principle
pseudomonotone map
picone identity
hartman condition
title Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
title_full Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
title_fullStr Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
title_full_unstemmed Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
title_short Existence of positive solutions for nonlinear Dirichlet problems with gradient dependence and arbitrary growth
title_sort existence of positive solutions for nonlinear dirichlet problems with gradient dependence and arbitrary growth
topic convection reaction term
nonlinear regularity
nonlinear maximum principle
pseudomonotone map
picone identity
hartman condition
url http://www.math.u-szeged.hu/ejqtde/periodica.html?periodica=1&paramtipus_ertek=publication&param_ertek=6310
work_keys_str_mv AT nikolaospapageorgiou existenceofpositivesolutionsfornonlineardirichletproblemswithgradientdependenceandarbitrarygrowth
AT calogerovetro existenceofpositivesolutionsfornonlineardirichletproblemswithgradientdependenceandarbitrarygrowth
AT francescavetro existenceofpositivesolutionsfornonlineardirichletproblemswithgradientdependenceandarbitrarygrowth