Deep social force network for anomaly event detection

Abstract Anomaly event detection is vital in surveillance video analysis. However, how to learn the discriminative motion in the crowd scene is still not tackled. Here, a deep social force network by exploiting both social force extracting and deep motion coding is proposed. Given a grid of particle...

Full description

Bibliographic Details
Main Authors: Xingming Yang, Zhiming Wang, Kewei Wu, Zhao Xie, Jinkui Hou
Format: Article
Language:English
Published: Wiley 2021-12-01
Series:IET Image Processing
Subjects:
Online Access:https://doi.org/10.1049/ipr2.12299
Description
Summary:Abstract Anomaly event detection is vital in surveillance video analysis. However, how to learn the discriminative motion in the crowd scene is still not tackled. Here, a deep social force network by exploiting both social force extracting and deep motion coding is proposed. Given a grid of particles with velocity provided by the optical flow, the interaction force in the crowd scene is investigated and a social force module is embedded in a deep network. A deep motion convolution was further designed with a 3D (DMC‐3D) module. The DMC‐3D not only eliminates the noise motion in the crowd scene with a spatial encoder–decoder but also learns the 3D feature with a spatio‐temporal encoder. The deep social force coding is modelled with multiple features, in which each feature can describe specific anomaly motion. The experiments on UCF‐Crime and ShanghaiTech datasets demonstrate that our method can predict the temporal localization of anomaly events and outperform the state‐of‐the‐art methods.
ISSN:1751-9659
1751-9667