A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem

Abstract In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by usi...

Full description

Bibliographic Details
Main Authors: Lin Li, Zuliang Lu, Wei Zhang, Fei Huang, Yin Yang
Format: Article
Language:English
Published: SpringerOpen 2018-06-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13660-018-1729-4
_version_ 1818215777495416832
author Lin Li
Zuliang Lu
Wei Zhang
Fei Huang
Yin Yang
author_facet Lin Li
Zuliang Lu
Wei Zhang
Fei Huang
Yin Yang
author_sort Lin Li
collection DOAJ
description Abstract In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L2(H1)−L2(L2) $L^{2}(H^{1})-L^{2}(L ^{2})$ a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L2(L2)−L2(L2) $L^{2}(L^{2})-L^{2}(L^{2})$ a posteriori error estimates of the approximation solutions for both the state and the control.
first_indexed 2024-12-12T06:41:28Z
format Article
id doaj.art-f9c26fe8cb1f45ec8b1f1cca752444a6
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-12T06:41:28Z
publishDate 2018-06-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-f9c26fe8cb1f45ec8b1f1cca752444a62022-12-22T00:34:20ZengSpringerOpenJournal of Inequalities and Applications1029-242X2018-06-012018112310.1186/s13660-018-1729-4A posteriori error estimates of spectral method for nonlinear parabolic optimal control problemLin Li0Zuliang Lu1Wei Zhang2Fei Huang3Yin Yang4Key Laboratory for Nonlinear Science and System Structure, Chongqing Three Gorges UniversityKey Laboratory for Nonlinear Science and System Structure, Chongqing Three Gorges UniversityKey Laboratory of Intelligent Information Processing and Control of Chongqing Municipal Institutions of Higher Education, Chongqing Three Gorges UniversityKey Laboratory for Nonlinear Science and System Structure, Chongqing Three Gorges UniversityHunan Key Laboratory for Computation and Simulation in Science and Engineering, Xiangtan UniversityAbstract In this paper, we investigate the spectral approximation of optimal control problem governed by nonlinear parabolic equations. A spectral approximation scheme for the nonlinear parabolic optimal control problem is presented. We construct a fully discrete spectral approximation scheme by using the backward Euler scheme in time. Moreover, by using an orthogonal projection operator, we obtain L2(H1)−L2(L2) $L^{2}(H^{1})-L^{2}(L ^{2})$ a posteriori error estimates of the approximation solutions for both the state and the control. Finally, by introducing two auxiliary equations, we also obtain L2(L2)−L2(L2) $L^{2}(L^{2})-L^{2}(L^{2})$ a posteriori error estimates of the approximation solutions for both the state and the control.http://link.springer.com/article/10.1186/s13660-018-1729-4Optimal control problemNonlinear parabolic equationsVariational discretizationSpectral methodA posteriori error estimates
spellingShingle Lin Li
Zuliang Lu
Wei Zhang
Fei Huang
Yin Yang
A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
Journal of Inequalities and Applications
Optimal control problem
Nonlinear parabolic equations
Variational discretization
Spectral method
A posteriori error estimates
title A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
title_full A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
title_fullStr A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
title_full_unstemmed A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
title_short A posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
title_sort posteriori error estimates of spectral method for nonlinear parabolic optimal control problem
topic Optimal control problem
Nonlinear parabolic equations
Variational discretization
Spectral method
A posteriori error estimates
url http://link.springer.com/article/10.1186/s13660-018-1729-4
work_keys_str_mv AT linli aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT zulianglu aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT weizhang aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT feihuang aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT yinyang aposteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT linli posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT zulianglu posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT weizhang posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT feihuang posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem
AT yinyang posteriorierrorestimatesofspectralmethodfornonlinearparabolicoptimalcontrolproblem