Changes in Corrosion Behaviour of Zinc and Aluminium Coatings with Increasing Seawater Acidification

The increase in greenhouse gas emissions has led to seawater acidification, increasing the corrosion rate of metal structures in marine applications. This paper indicates that the spraying of four types of coatings, namely Zn, Al, Zn-Al, and Al-Mg, using the arc-spraying technique on steel substrate...

Full description

Bibliographic Details
Main Authors: Cezary Senderowski, Wojciech Rejmer, Nataliia Vigilianska, Arkadiusz Jeznach
Format: Article
Language:English
Published: MDPI AG 2024-01-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/17/3/536
Description
Summary:The increase in greenhouse gas emissions has led to seawater acidification, increasing the corrosion rate of metal structures in marine applications. This paper indicates that the spraying of four types of coatings, namely Zn, Al, Zn-Al, and Al-Mg, using the arc-spraying technique on steel substrate S235JR, creates effective protective coatings that interact differently with various pH solutions exposed to varying levels of seawater acidification. The study analyses the structural properties of the coating materials using SEM and XRD techniques. Electrochemical parameters are evaluated in solutions with different pH and salinity levels. The results demonstrate that alloy metallic coatings provide excellent resistance to corrosion in low-pH solutions.
ISSN:1996-1944