Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
In this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics>...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-12-01
|
Series: | Sensors |
Subjects: | |
Online Access: | https://www.mdpi.com/1424-8220/18/12/4392 |
_version_ | 1811306842048954368 |
---|---|
author | Meriem Akin Autumn Pratt Jennifer Blackburn Andreas Dietzel |
author_facet | Meriem Akin Autumn Pratt Jennifer Blackburn Andreas Dietzel |
author_sort | Meriem Akin |
collection | DOAJ |
description | In this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula>) thin film. To interpret the characteristics of the sensor, we proposed a computational model to capture the influence of the stochastic fiber network of the paper surface and to explain the physics behind the empirically observed difference in paper-based anisotropic magneto-resistance (AMR). Using the model, we verified two main empirical observations: (1) The stochastic fiber network of the paper substrate induces a shift of <inline-formula> <math display="inline"> <semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in the AMR response of the paper-based Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> thin film compared to a Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> film on a smooth surface as long as the fibrous topography has not become buried. (2) The ratio of magnitudes of AMR peaks at different anisotropy angles and the inverted AMR peak at the <inline-formula> <math display="inline"> <semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>-anisotropy angle are explained through the superposition of the responses of Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> inheriting the fibrous topography and smoother Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> on buried fibrous topographies. As for the sensitivity and reproducibility of the sensor signal, we obtained a maximum AMR peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.4</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, min-max sensitivity range of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0.17</mn> <mo>,</mo> <mn>0.26</mn> <mo>]</mo> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, average asymmetry of peak location of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.7</mn> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>kA</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> within two consecutive magnetic loading cycles, and a deviation of 250⁻850 <inline-formula> <math display="inline"> <semantics> <mfrac> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> of peak location across several anisotropy angles at a base resistance of ∼100 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>. Last, we demonstrated the usability of the sensor in two educational application examples: a textbook clicker and interactive braille flashcards. |
first_indexed | 2024-04-13T08:53:53Z |
format | Article |
id | doaj.art-f9cced6f0d7d46519199875c28e99115 |
institution | Directory Open Access Journal |
issn | 1424-8220 |
language | English |
last_indexed | 2024-04-13T08:53:53Z |
publishDate | 2018-12-01 |
publisher | MDPI AG |
record_format | Article |
series | Sensors |
spelling | doaj.art-f9cced6f0d7d46519199875c28e991152022-12-22T02:53:25ZengMDPI AGSensors1424-82202018-12-011812439210.3390/s18124392s18124392Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and ApplicationMeriem Akin0Autumn Pratt1Jennifer Blackburn2Andreas Dietzel3Institute of Microtechnology, Department of Mechanical Engineering, Braunschweig University of Technology, 38124 Braunschweig, GermanySibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USASchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USAInstitute of Microtechnology, Department of Mechanical Engineering, Braunschweig University of Technology, 38124 Braunschweig, GermanyIn this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula>) thin film. To interpret the characteristics of the sensor, we proposed a computational model to capture the influence of the stochastic fiber network of the paper surface and to explain the physics behind the empirically observed difference in paper-based anisotropic magneto-resistance (AMR). Using the model, we verified two main empirical observations: (1) The stochastic fiber network of the paper substrate induces a shift of <inline-formula> <math display="inline"> <semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in the AMR response of the paper-based Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> thin film compared to a Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> film on a smooth surface as long as the fibrous topography has not become buried. (2) The ratio of magnitudes of AMR peaks at different anisotropy angles and the inverted AMR peak at the <inline-formula> <math display="inline"> <semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>-anisotropy angle are explained through the superposition of the responses of Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> inheriting the fibrous topography and smoother Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> on buried fibrous topographies. As for the sensitivity and reproducibility of the sensor signal, we obtained a maximum AMR peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.4</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, min-max sensitivity range of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0.17</mn> <mo>,</mo> <mn>0.26</mn> <mo>]</mo> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, average asymmetry of peak location of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.7</mn> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>kA</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> within two consecutive magnetic loading cycles, and a deviation of 250⁻850 <inline-formula> <math display="inline"> <semantics> <mfrac> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> of peak location across several anisotropy angles at a base resistance of ∼100 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">Ω</mi> </semantics> </math> </inline-formula>. Last, we demonstrated the usability of the sensor in two educational application examples: a textbook clicker and interactive braille flashcards.https://www.mdpi.com/1424-8220/18/12/4392paper-basedmagneto-resistancesensor |
spellingShingle | Meriem Akin Autumn Pratt Jennifer Blackburn Andreas Dietzel Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application Sensors paper-based magneto-resistance sensor |
title | Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application |
title_full | Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application |
title_fullStr | Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application |
title_full_unstemmed | Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application |
title_short | Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application |
title_sort | paper based magneto resistive sensor modeling fabrication characterization and application |
topic | paper-based magneto-resistance sensor |
url | https://www.mdpi.com/1424-8220/18/12/4392 |
work_keys_str_mv | AT meriemakin paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication AT autumnpratt paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication AT jenniferblackburn paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication AT andreasdietzel paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication |