Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application

In this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics>...

Full description

Bibliographic Details
Main Authors: Meriem Akin, Autumn Pratt, Jennifer Blackburn, Andreas Dietzel
Format: Article
Language:English
Published: MDPI AG 2018-12-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/12/4392
_version_ 1811306842048954368
author Meriem Akin
Autumn Pratt
Jennifer Blackburn
Andreas Dietzel
author_facet Meriem Akin
Autumn Pratt
Jennifer Blackburn
Andreas Dietzel
author_sort Meriem Akin
collection DOAJ
description In this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula>) thin film. To interpret the characteristics of the sensor, we proposed a computational model to capture the influence of the stochastic fiber network of the paper surface and to explain the physics behind the empirically observed difference in paper-based anisotropic magneto-resistance (AMR). Using the model, we verified two main empirical observations: (1) The stochastic fiber network of the paper substrate induces a shift of <inline-formula> <math display="inline"> <semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in the AMR response of the paper-based Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> thin film compared to a Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> film on a smooth surface as long as the fibrous topography has not become buried. (2) The ratio of magnitudes of AMR peaks at different anisotropy angles and the inverted AMR peak at the <inline-formula> <math display="inline"> <semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>-anisotropy angle are explained through the superposition of the responses of Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> inheriting the fibrous topography and smoother Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> on buried fibrous topographies. As for the sensitivity and reproducibility of the sensor signal, we obtained a maximum AMR peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.4</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, min-max sensitivity range of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0.17</mn> <mo>,</mo> <mn>0.26</mn> <mo>]</mo> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, average asymmetry of peak location of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.7</mn> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>kA</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> within two consecutive magnetic loading cycles, and a deviation of 250&#8315;850 <inline-formula> <math display="inline"> <semantics> <mfrac> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> of peak location across several anisotropy angles at a base resistance of &#8764;100 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#937;</mi> </semantics> </math> </inline-formula>. Last, we demonstrated the usability of the sensor in two educational application examples: a textbook clicker and interactive braille flashcards.
first_indexed 2024-04-13T08:53:53Z
format Article
id doaj.art-f9cced6f0d7d46519199875c28e99115
institution Directory Open Access Journal
issn 1424-8220
language English
last_indexed 2024-04-13T08:53:53Z
publishDate 2018-12-01
publisher MDPI AG
record_format Article
series Sensors
spelling doaj.art-f9cced6f0d7d46519199875c28e991152022-12-22T02:53:25ZengMDPI AGSensors1424-82202018-12-011812439210.3390/s18124392s18124392Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and ApplicationMeriem Akin0Autumn Pratt1Jennifer Blackburn2Andreas Dietzel3Institute of Microtechnology, Department of Mechanical Engineering, Braunschweig University of Technology, 38124 Braunschweig, GermanySibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USASchool of Mechanical Engineering, Purdue University, West Lafayette, IN 47907, USAInstitute of Microtechnology, Department of Mechanical Engineering, Braunschweig University of Technology, 38124 Braunschweig, GermanyIn this work, we developed and fabricated a paper-based anisotropic magneto-resistive sensor using a sputtered permalloy (Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula>) thin film. To interpret the characteristics of the sensor, we proposed a computational model to capture the influence of the stochastic fiber network of the paper surface and to explain the physics behind the empirically observed difference in paper-based anisotropic magneto-resistance (AMR). Using the model, we verified two main empirical observations: (1) The stochastic fiber network of the paper substrate induces a shift of <inline-formula> <math display="inline"> <semantics> <msup> <mn>45</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula> in the AMR response of the paper-based Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> thin film compared to a Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> film on a smooth surface as long as the fibrous topography has not become buried. (2) The ratio of magnitudes of AMR peaks at different anisotropy angles and the inverted AMR peak at the <inline-formula> <math display="inline"> <semantics> <msup> <mn>90</mn> <mo>∘</mo> </msup> </semantics> </math> </inline-formula>-anisotropy angle are explained through the superposition of the responses of Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> inheriting the fibrous topography and smoother Ni<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>81</mn> </msub> </semantics> </math> </inline-formula>Fe<inline-formula> <math display="inline"> <semantics> <msub> <mrow></mrow> <mn>19</mn> </msub> </semantics> </math> </inline-formula> on buried fibrous topographies. As for the sensitivity and reproducibility of the sensor signal, we obtained a maximum AMR peak of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>0.4</mn> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, min-max sensitivity range of <inline-formula> <math display="inline"> <semantics> <mrow> <mo>[</mo> <mn>0.17</mn> <mo>,</mo> <mn>0.26</mn> <mo>]</mo> <mo>%</mo> </mrow> </semantics> </math> </inline-formula>, average asymmetry of peak location of <inline-formula> <math display="inline"> <semantics> <mrow> <mn>2.7</mn> </mrow> </semantics> </math> </inline-formula> <inline-formula> <math display="inline"> <semantics> <mfrac> <mi>kA</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> within two consecutive magnetic loading cycles, and a deviation of 250&#8315;850 <inline-formula> <math display="inline"> <semantics> <mfrac> <mi mathvariant="normal">A</mi> <mi mathvariant="normal">m</mi> </mfrac> </semantics> </math> </inline-formula> of peak location across several anisotropy angles at a base resistance of &#8764;100 <inline-formula> <math display="inline"> <semantics> <mi mathvariant="sans-serif">&#937;</mi> </semantics> </math> </inline-formula>. Last, we demonstrated the usability of the sensor in two educational application examples: a textbook clicker and interactive braille flashcards.https://www.mdpi.com/1424-8220/18/12/4392paper-basedmagneto-resistancesensor
spellingShingle Meriem Akin
Autumn Pratt
Jennifer Blackburn
Andreas Dietzel
Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
Sensors
paper-based
magneto-resistance
sensor
title Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
title_full Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
title_fullStr Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
title_full_unstemmed Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
title_short Paper-Based Magneto-Resistive Sensor: Modeling, Fabrication, Characterization, and Application
title_sort paper based magneto resistive sensor modeling fabrication characterization and application
topic paper-based
magneto-resistance
sensor
url https://www.mdpi.com/1424-8220/18/12/4392
work_keys_str_mv AT meriemakin paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication
AT autumnpratt paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication
AT jenniferblackburn paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication
AT andreasdietzel paperbasedmagnetoresistivesensormodelingfabricationcharacterizationandapplication