Summary: | Short-range biomimetic covert communications have been developed using dolphin whistles for underwater acoustic covert communications. Due to a channel characteristics difference by range, the conventional short-range methods cannot be directly applied to long-range communications. To enable long-range biomimicking communication, overcoming the large multipath delay and a high degree of mimic (DoM) in the low-frequency band is required. This paper proposes a novel biomimetic communication method that preserves a low bit-error rate (BER) with a large DoM in the low-frequency band. For the transmission, the proposed method utilizes the time-dependent frequency change of the whistle, and its receiver obtains additional SNR gain from the multipath delay. Computer simulations and practical ocean experiments were executed to demonstrate that the BER performance of the proposed method is better than the conventional methods. For the DoM assessment, the novel machine learning-based method was utilized, and the result shows that the whistles generated by the proposed method were recognized as the actual whistle of the right humpback whale.
|