The successful synthesis of industrial isomaltooligosaccharides lies in the use of transglycosylating α-glucosidases: A review
Consumption of oligosaccharides which can evade host digestive enzymes but can be selectively taken-up by populations of bacteria native to the host colon in situ, improves the gut health of host through various mechanisms. However, their consumption from natural sources is constrained by adequacy,...
Autors principals: | Sandeep Kumar, Trisha Tissopi, Sarma Mutturi |
---|---|
Format: | Article |
Idioma: | English |
Publicat: |
Elsevier
2023-06-01
|
Col·lecció: | Carbohydrate Polymer Technologies and Applications |
Matèries: | |
Accés en línia: | http://www.sciencedirect.com/science/article/pii/S2666893923000464 |
Ítems similars
-
Heterologous Expression of Thermotolerant α-Glucosidase in <i>Bacillus subtilis</i> 168 and Improving Its Thermal Stability by Constructing Cyclized Proteins
per: Zhi Wang, et al.
Publicat: (2022-09-01) -
β-Glucosidase and β-Galactosidase-Mediated Transglycosylation of Steviol Glycosides Utilizing Industrial Byproducts
per: Anastasia Zerva, et al.
Publicat: (2021-06-01) -
Production of a Series of Long-Chain Isomaltooligosaccharides from Maltose by <i>Bacillus subtilis</i> AP-1 and Associated Prebiotic Properties
per: Suratsawadee Tiangpook, et al.
Publicat: (2023-04-01) -
Starch biotransformation into isomaltooligosaccharides using thermostable alpha-glucosidase from Geobacillus stearothermophilus
per: Peng Chen, et al.
Publicat: (2018-06-01) -
Research Status of Isomaltooligosaccharides by Enzymatic Preparation
per: Shenghui RUAN, et al.
Publicat: (2023-09-01)