Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations

<p/> <p>By using the critical point theory, we establish some existence criteria to guarantee that the nonlinear difference equation <inline-formula><graphic file="1687-1847-2010-470375-i1.gif"/></inline-formula> has at least one homoclinic solution, where <...

Full description

Bibliographic Details
Main Authors: Chen Peng, Tang XH
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Advances in Difference Equations
Online Access:http://www.advancesindifferenceequations.com/content/2010/470375
_version_ 1828393185031749632
author Chen Peng
Tang XH
author_facet Chen Peng
Tang XH
author_sort Chen Peng
collection DOAJ
description <p/> <p>By using the critical point theory, we establish some existence criteria to guarantee that the nonlinear difference equation <inline-formula><graphic file="1687-1847-2010-470375-i1.gif"/></inline-formula> has at least one homoclinic solution, where <inline-formula><graphic file="1687-1847-2010-470375-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-470375-i3.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-470375-i4.gif"/></inline-formula> is non periodic in <inline-formula><graphic file="1687-1847-2010-470375-i5.gif"/></inline-formula>. Our conditions on the nonlinear term <inline-formula><graphic file="1687-1847-2010-470375-i6.gif"/></inline-formula> are rather relaxed, and we generalize some existing results in the literature.</p>
first_indexed 2024-12-10T07:34:38Z
format Article
id doaj.art-f9ed64128e6e40df9fcbe7c5856c9863
institution Directory Open Access Journal
issn 1687-1839
1687-1847
language English
last_indexed 2024-12-10T07:34:38Z
publishDate 2010-01-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-f9ed64128e6e40df9fcbe7c5856c98632022-12-22T01:57:28ZengSpringerOpenAdvances in Difference Equations1687-18391687-18472010-01-0120101470375Existence of Homoclinic Solutions for a Class of Nonlinear Difference EquationsChen PengTang XH<p/> <p>By using the critical point theory, we establish some existence criteria to guarantee that the nonlinear difference equation <inline-formula><graphic file="1687-1847-2010-470375-i1.gif"/></inline-formula> has at least one homoclinic solution, where <inline-formula><graphic file="1687-1847-2010-470375-i2.gif"/></inline-formula>, <inline-formula><graphic file="1687-1847-2010-470375-i3.gif"/></inline-formula> and <inline-formula><graphic file="1687-1847-2010-470375-i4.gif"/></inline-formula> is non periodic in <inline-formula><graphic file="1687-1847-2010-470375-i5.gif"/></inline-formula>. Our conditions on the nonlinear term <inline-formula><graphic file="1687-1847-2010-470375-i6.gif"/></inline-formula> are rather relaxed, and we generalize some existing results in the literature.</p>http://www.advancesindifferenceequations.com/content/2010/470375
spellingShingle Chen Peng
Tang XH
Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
Advances in Difference Equations
title Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
title_full Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
title_fullStr Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
title_full_unstemmed Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
title_short Existence of Homoclinic Solutions for a Class of Nonlinear Difference Equations
title_sort existence of homoclinic solutions for a class of nonlinear difference equations
url http://www.advancesindifferenceequations.com/content/2010/470375
work_keys_str_mv AT chenpeng existenceofhomoclinicsolutionsforaclassofnonlineardifferenceequations
AT tangxh existenceofhomoclinicsolutionsforaclassofnonlineardifferenceequations