Consistency and Generalization Bounds for Maximum Entropy Density Estimation

We investigate the statistical properties of maximum entropy density estimation, both for the complete data case and the incomplete data case. We show that under certain assumptions, the generalization error can be bounded in terms of the complexity of the underlying feature functions. This allows u...

Full description

Bibliographic Details
Main Authors: Shaojun Wang, Russell Greiner, Shaomin Wang
Format: Article
Language:English
Published: MDPI AG 2013-12-01
Series:Entropy
Subjects:
Online Access:http://www.mdpi.com/1099-4300/15/12/5439
_version_ 1828395639105388544
author Shaojun Wang
Russell Greiner
Shaomin Wang
author_facet Shaojun Wang
Russell Greiner
Shaomin Wang
author_sort Shaojun Wang
collection DOAJ
description We investigate the statistical properties of maximum entropy density estimation, both for the complete data case and the incomplete data case. We show that under certain assumptions, the generalization error can be bounded in terms of the complexity of the underlying feature functions. This allows us to establish the universal consistency of maximum entropy density estimation.
first_indexed 2024-12-10T08:16:32Z
format Article
id doaj.art-f9ee22c315664032b2b595eb909067be
institution Directory Open Access Journal
issn 1099-4300
language English
last_indexed 2024-12-10T08:16:32Z
publishDate 2013-12-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj.art-f9ee22c315664032b2b595eb909067be2022-12-22T01:56:27ZengMDPI AGEntropy1099-43002013-12-0115125439546310.3390/e15125439e15125439Consistency and Generalization Bounds for Maximum Entropy Density EstimationShaojun Wang0Russell Greiner1Shaomin Wang2Kno.e.sis Center, Department of Computer Science and Engineering, Wright State University, Dayton, OH 45435, USADepartment of Computing Science, University of Alberta, Edmonton, Alberta T6G 2E8, CanadaVisa Inc., San Francisco, CA 94128, USAWe investigate the statistical properties of maximum entropy density estimation, both for the complete data case and the incomplete data case. We show that under certain assumptions, the generalization error can be bounded in terms of the complexity of the underlying feature functions. This allows us to establish the universal consistency of maximum entropy density estimation.http://www.mdpi.com/1099-4300/15/12/5439maximum entropy principledensity estimationgeneralization boundconsistency
spellingShingle Shaojun Wang
Russell Greiner
Shaomin Wang
Consistency and Generalization Bounds for Maximum Entropy Density Estimation
Entropy
maximum entropy principle
density estimation
generalization bound
consistency
title Consistency and Generalization Bounds for Maximum Entropy Density Estimation
title_full Consistency and Generalization Bounds for Maximum Entropy Density Estimation
title_fullStr Consistency and Generalization Bounds for Maximum Entropy Density Estimation
title_full_unstemmed Consistency and Generalization Bounds for Maximum Entropy Density Estimation
title_short Consistency and Generalization Bounds for Maximum Entropy Density Estimation
title_sort consistency and generalization bounds for maximum entropy density estimation
topic maximum entropy principle
density estimation
generalization bound
consistency
url http://www.mdpi.com/1099-4300/15/12/5439
work_keys_str_mv AT shaojunwang consistencyandgeneralizationboundsformaximumentropydensityestimation
AT russellgreiner consistencyandgeneralizationboundsformaximumentropydensityestimation
AT shaominwang consistencyandgeneralizationboundsformaximumentropydensityestimation