Summary: | The siphonous green algae form a morphologically diverse group of marine macroalgae which include two sister orders (Bryopsidales and Dasycladales) which share a unique feature among other green algae as they are able to form large, differentiated thalli comprising of a single, giant tubular cell. Upon cell damage a cascade of protective mechanisms have evolved including the extrusion of sulfated metabolites which are involved in the formation of a rapid wound plug. In this study, we investigated the composition of sulfated metabolites in <i>Dasycladus vermicularis</i> (Dasycladales) which resulted in the isolation of two phenolic acids and four coumarins including two novel structures elucidated by nuclear magnetic resonance spectroscopy (NMR) as 5,8′-di-(6(6′),7(7′)-tetrahydroxy-3-sulfoxy-3′-sulfoxycoumarin), a novel coumarin called dasycladin A and 7-hydroxycoumarin-3,6-disulfate, which was named dasycladin B. In addition, an analytical assay for the chromatographic quantification of those compounds was developed and performed on a reversed phase C-18 column. Method validation confirmed that the new assay shows good linearity (R<sup>2</sup> ≥ 0.9986), precision (intra-day R.S.D ≤ 3.71%, inter-day R.S.D ≤ 7.49%), and accuracy (recovery rates ranged from 104.06 to 97.45%). The analysis of several samples of <i>Dasycladus vermicularis</i> from different collection sites, water depths and seasons revealed differences in the coumarin contents, ranging between 0.26 to 1.61%.
|