Optimal Sizing of Solar-Assisted Heat Pump Systems for Residential Buildings

This paper analyzes the optimal sizing of a particular solution for renewable energy residential building integration. The solution combines a photovoltaic (PV) plant with a heat pump (HP). The idea is to develop a system that permits the maximum level of self-consumption of renewable energy generat...

Full description

Bibliographic Details
Main Authors: Alessandro Franco, Fabio Fantozzi
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Buildings
Subjects:
Online Access:https://www.mdpi.com/2075-5309/10/10/175
Description
Summary:This paper analyzes the optimal sizing of a particular solution for renewable energy residential building integration. The solution combines a photovoltaic (PV) plant with a heat pump (HP). The idea is to develop a system that permits the maximum level of self-consumption of renewable energy generated by using a small-scale solar array installed on the same building. The problem is analyzed using data obtained from an experimental system installed in a building in Pisa, Italy. The residential house was equipped with a PV plant (about 3.7 kW of peak power), assisting a HP of similar electrical power (3.8 kW). The system was monitored for eight years of continuous operation. With reference to the data acquired from the long-term experimental analysis and considering a more general perspective, we discuss criteria and guidelines for the design of such a system. We focus on the possibility of exporting energy to the electrical grid, from the perspective of obtaining self-consumption schemes. Considering that one of the problems with small-scale PV plants is represented by the bidirectional energy flows from and to the grid, possible alternative solutions for the design are outlined, with both a size reduction in the plant and utilization of a storage system considered. Different design objectives are considered in the analysis.
ISSN:2075-5309