In vitro antioxidant, antibacterial, in vivo immunomodulatory, antitumor and hematological potential of exopolysaccharide produced by wild type and mutant Lactobacillus delbureckii subsp. bulgaricus

Biological evaluation of exopolysaccharides (EPS) produced by wild type and mutant Lactobacillus delbureckii (EPSWLD and EPSMLD) was investigated. Varying degrees of functional groups associated with polysaccharides were present thus confirming the EPS. The EPSs had strong antioxidant potential in a...

Full description

Bibliographic Details
Main Authors: Bukola Adebayo-Tayo, Racheal Fashogbon
Format: Article
Language:English
Published: Elsevier 2020-02-01
Series:Heliyon
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2405844020301134
Description
Summary:Biological evaluation of exopolysaccharides (EPS) produced by wild type and mutant Lactobacillus delbureckii (EPSWLD and EPSMLD) was investigated. Varying degrees of functional groups associated with polysaccharides were present thus confirming the EPS. The EPSs had strong antioxidant potential in a dose dependent (0.5–10 mg/mL) manner. EPSWLD and EPSMLD exhibited the highest 1,1-diphemy 1-2-picryl-hydrazyl (DPPH) activity (73.4 % and 65.6 %), total antioxidant activity (1.80 % and 1.42 %), H2O2 scavenging activity (88.5 % and 78.6 %) and Ferric Reducing Antioxidant Power (FRAP) (1.89 % and1.81 %) at 10 mg/mL respectively. WLD and MLD were highly susceptible to chloramphenicol, cotrimoxazole, tetracycline, erythromycin and ceftazidine and resistant to cefuroxime, gentamicin and cloxacillin. The EPSs had antibacterial activity against the test pathogens. B. subtilis and S. aureus had the highest susceptibility (26.0 mm and 23.0 mm). EPSMLD modulate the highest IgG, IgA and IgM production (68–126 mg/dL and 67–98 mg/dL and 64–97 mg/dL) in the treated tumor induced mice (TTIM). EPSWLD and EPSMLD exhibited reduction capability on the CEA level (3.99–4.35 ng/L and 4.12–4.23 ng/L) of the TTIM. EPSWLD TTIM had the highest amount of RBC, WBC and PCV (5.6 × 1012%, 68000% and 42%). The EPS increased the lifespan of TTIM. In conclusion EPSWLD and EPSMLD had strong biological potential with pharmacological and neutraceutical activity.
ISSN:2405-8440