Flexural performance and ductility of RC beams made using natural LWA

This paper evaluates experimentally the feasibility of utilizing local natural lightweight aggregates (LWA) for designing reinforced concrete (RC) beams. The aggregates investigated were of scoria origin, with an absorption capacity of 10%, and dry densities ranging between 860 and 1120 kg/m3. A ser...

Full description

Bibliographic Details
Main Authors: Mohammad J. Alshannag, Abdulhamid Charif, Ali S. Alqarni, Salman Nasser
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Case Studies in Construction Materials
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2214509522000742
Description
Summary:This paper evaluates experimentally the feasibility of utilizing local natural lightweight aggregates (LWA) for designing reinforced concrete (RC) beams. The aggregates investigated were of scoria origin, with an absorption capacity of 10%, and dry densities ranging between 860 and 1120 kg/m3. A series of full-scale 16 simply supported RC beams of rectangular cross section were designed using two concrete strengths, normal and high, and two tension steel ratios of the balanced reinforcement ratio, following ACI code requirements. For the lightweight concrete (LWC) mixes designed, the replacement level of normal weight aggregates (NWA) with coarse LWA was 100%, whereas the replacement level for fine LWA was 62.5%. Data presented include load-deflection, and moment-curvature graphs, cracking behavior, mode of failure and ductility indexes. Test results indicated that the flexural response of LWC beams was similar to that of normal weight concrete (NWC) beams. All the LWC beams tested failed in ductile flexural mode, exhibited relatively larger mid span deflections, higher curvatures, and wider cracks, compared to NWC beams of equal concrete strength and steel ratio. The most influential parameter on the ductility indexes of LWC beams was the steel ratio. Moreover, the scoria LWA investigated can be used successfully in structural design.
ISSN:2214-5095