Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resoluti...
Main Authors: | , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2021-09-01
|
Series: | Frontiers in Remote Sensing |
Subjects: | |
Online Access: | https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full |
_version_ | 1797972007228276736 |
---|---|
author | Yongxiang Hu Xiaomei Lu Peng-Wang Zhai Chris A. Hostetler Johnathan W. Hair Brian Cairns Wenbo Sun Snorre Stamnes Ali Omar Rosemary Baize Gorden Videen Gorden Videen Jay Mace Daniel T. McCoy Isabel L. McCoy Isabel L. McCoy Isabel L. McCoy Robert Wood |
author_facet | Yongxiang Hu Xiaomei Lu Peng-Wang Zhai Chris A. Hostetler Johnathan W. Hair Brian Cairns Wenbo Sun Snorre Stamnes Ali Omar Rosemary Baize Gorden Videen Gorden Videen Jay Mace Daniel T. McCoy Isabel L. McCoy Isabel L. McCoy Isabel L. McCoy Robert Wood |
author_sort | Yongxiang Hu |
collection | DOAJ |
description | A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research Scanning Polarimeter (RSP) measurements made on an aircraft that flew under CALIPSO. The global cloud microphysical properties are derived from 14+ years of CALIPSO lidar measurements, and the droplet sizes are compared to corresponding values inferred from MODIS passive imagery. This new product will provide constraints to improve modeling of Earth’s water cycle and cloud-climate interactions. |
first_indexed | 2024-04-11T03:41:38Z |
format | Article |
id | doaj.art-fa21f01c3bad455993a9f3aed38b13d0 |
institution | Directory Open Access Journal |
issn | 2673-6187 |
language | English |
last_indexed | 2024-04-11T03:41:38Z |
publishDate | 2021-09-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Remote Sensing |
spelling | doaj.art-fa21f01c3bad455993a9f3aed38b13d02023-01-02T03:52:05ZengFrontiers Media S.A.Frontiers in Remote Sensing2673-61872021-09-01210.3389/frsen.2021.724615724615Liquid Phase Cloud Microphysical Property Estimates From CALIPSO MeasurementsYongxiang Hu0Xiaomei Lu1Peng-Wang Zhai2Chris A. Hostetler3Johnathan W. Hair4Brian Cairns5Wenbo Sun6Snorre Stamnes7Ali Omar8Rosemary Baize9Gorden Videen10Gorden Videen11Jay Mace12Daniel T. McCoy13Isabel L. McCoy14Isabel L. McCoy15Isabel L. McCoy16Robert Wood17Science Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesPhysics Department, University of Maryland, Baltimore County, Baltimore, MD, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesNASA Goddard Institute for Space Studies, New York, NY, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesSpace Science Institute, Boulder Suite, CO, United StatesUS Army Research Laboratory, Adelphi, MD, United StatesDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, UT, United StatesDepartment of Atmospheric Science, University of Wyoming, Laramie, WY, United StatesDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, United StatesRosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, United States0University Corporation for Atmospheric Research, Boulder, CO, United StatesDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, United StatesA neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research Scanning Polarimeter (RSP) measurements made on an aircraft that flew under CALIPSO. The global cloud microphysical properties are derived from 14+ years of CALIPSO lidar measurements, and the droplet sizes are compared to corresponding values inferred from MODIS passive imagery. This new product will provide constraints to improve modeling of Earth’s water cycle and cloud-climate interactions.https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/fullCALIPSOwater cloudmicrophysicsnumber concentrationwater content |
spellingShingle | Yongxiang Hu Xiaomei Lu Peng-Wang Zhai Chris A. Hostetler Johnathan W. Hair Brian Cairns Wenbo Sun Snorre Stamnes Ali Omar Rosemary Baize Gorden Videen Gorden Videen Jay Mace Daniel T. McCoy Isabel L. McCoy Isabel L. McCoy Isabel L. McCoy Robert Wood Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements Frontiers in Remote Sensing CALIPSO water cloud microphysics number concentration water content |
title | Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements |
title_full | Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements |
title_fullStr | Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements |
title_full_unstemmed | Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements |
title_short | Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements |
title_sort | liquid phase cloud microphysical property estimates from calipso measurements |
topic | CALIPSO water cloud microphysics number concentration water content |
url | https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full |
work_keys_str_mv | AT yongxianghu liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT xiaomeilu liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT pengwangzhai liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT chrisahostetler liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT johnathanwhair liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT briancairns liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT wenbosun liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT snorrestamnes liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT aliomar liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT rosemarybaize liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT gordenvideen liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT gordenvideen liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT jaymace liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT danieltmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements AT robertwood liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements |