Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements

A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resoluti...

Full description

Bibliographic Details
Main Authors: Yongxiang Hu, Xiaomei Lu, Peng-Wang Zhai, Chris A. Hostetler, Johnathan W. Hair, Brian Cairns, Wenbo Sun, Snorre Stamnes, Ali Omar, Rosemary Baize, Gorden Videen, Jay Mace, Daniel T. McCoy, Isabel L. McCoy, Robert Wood
Format: Article
Language:English
Published: Frontiers Media S.A. 2021-09-01
Series:Frontiers in Remote Sensing
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full
_version_ 1797972007228276736
author Yongxiang Hu
Xiaomei Lu
Peng-Wang Zhai
Chris A. Hostetler
Johnathan W. Hair
Brian Cairns
Wenbo Sun
Snorre Stamnes
Ali Omar
Rosemary Baize
Gorden Videen
Gorden Videen
Jay Mace
Daniel T. McCoy
Isabel L. McCoy
Isabel L. McCoy
Isabel L. McCoy
Robert Wood
author_facet Yongxiang Hu
Xiaomei Lu
Peng-Wang Zhai
Chris A. Hostetler
Johnathan W. Hair
Brian Cairns
Wenbo Sun
Snorre Stamnes
Ali Omar
Rosemary Baize
Gorden Videen
Gorden Videen
Jay Mace
Daniel T. McCoy
Isabel L. McCoy
Isabel L. McCoy
Isabel L. McCoy
Robert Wood
author_sort Yongxiang Hu
collection DOAJ
description A neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research Scanning Polarimeter (RSP) measurements made on an aircraft that flew under CALIPSO. The global cloud microphysical properties are derived from 14+ years of CALIPSO lidar measurements, and the droplet sizes are compared to corresponding values inferred from MODIS passive imagery. This new product will provide constraints to improve modeling of Earth’s water cycle and cloud-climate interactions.
first_indexed 2024-04-11T03:41:38Z
format Article
id doaj.art-fa21f01c3bad455993a9f3aed38b13d0
institution Directory Open Access Journal
issn 2673-6187
language English
last_indexed 2024-04-11T03:41:38Z
publishDate 2021-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Remote Sensing
spelling doaj.art-fa21f01c3bad455993a9f3aed38b13d02023-01-02T03:52:05ZengFrontiers Media S.A.Frontiers in Remote Sensing2673-61872021-09-01210.3389/frsen.2021.724615724615Liquid Phase Cloud Microphysical Property Estimates From CALIPSO MeasurementsYongxiang Hu0Xiaomei Lu1Peng-Wang Zhai2Chris A. Hostetler3Johnathan W. Hair4Brian Cairns5Wenbo Sun6Snorre Stamnes7Ali Omar8Rosemary Baize9Gorden Videen10Gorden Videen11Jay Mace12Daniel T. McCoy13Isabel L. McCoy14Isabel L. McCoy15Isabel L. McCoy16Robert Wood17Science Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesPhysics Department, University of Maryland, Baltimore County, Baltimore, MD, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesNASA Goddard Institute for Space Studies, New York, NY, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesScience Directorate, NASA Langley Research Center, Hampton, VA, United StatesSpace Science Institute, Boulder Suite, CO, United StatesUS Army Research Laboratory, Adelphi, MD, United StatesDepartment of Atmospheric Sciences, University of Utah, Salt Lake City, UT, United StatesDepartment of Atmospheric Science, University of Wyoming, Laramie, WY, United StatesDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, United StatesRosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, FL, United States0University Corporation for Atmospheric Research, Boulder, CO, United StatesDepartment of Atmospheric Sciences, University of Washington, Seattle, WA, United StatesA neural-network algorithm that uses CALIPSO lidar measurements to infer droplet effective radius, extinction coefficient, liquid-water content, and droplet number concentration for water clouds is described and assessed. These results are verified against values inferred from High-Spectral-Resolution Lidar (HSRL) and Research Scanning Polarimeter (RSP) measurements made on an aircraft that flew under CALIPSO. The global cloud microphysical properties are derived from 14+ years of CALIPSO lidar measurements, and the droplet sizes are compared to corresponding values inferred from MODIS passive imagery. This new product will provide constraints to improve modeling of Earth’s water cycle and cloud-climate interactions.https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/fullCALIPSOwater cloudmicrophysicsnumber concentrationwater content
spellingShingle Yongxiang Hu
Xiaomei Lu
Peng-Wang Zhai
Chris A. Hostetler
Johnathan W. Hair
Brian Cairns
Wenbo Sun
Snorre Stamnes
Ali Omar
Rosemary Baize
Gorden Videen
Gorden Videen
Jay Mace
Daniel T. McCoy
Isabel L. McCoy
Isabel L. McCoy
Isabel L. McCoy
Robert Wood
Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
Frontiers in Remote Sensing
CALIPSO
water cloud
microphysics
number concentration
water content
title Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
title_full Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
title_fullStr Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
title_full_unstemmed Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
title_short Liquid Phase Cloud Microphysical Property Estimates From CALIPSO Measurements
title_sort liquid phase cloud microphysical property estimates from calipso measurements
topic CALIPSO
water cloud
microphysics
number concentration
water content
url https://www.frontiersin.org/articles/10.3389/frsen.2021.724615/full
work_keys_str_mv AT yongxianghu liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT xiaomeilu liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT pengwangzhai liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT chrisahostetler liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT johnathanwhair liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT briancairns liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT wenbosun liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT snorrestamnes liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT aliomar liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT rosemarybaize liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT gordenvideen liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT gordenvideen liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT jaymace liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT danieltmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT isabellmccoy liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements
AT robertwood liquidphasecloudmicrophysicalpropertyestimatesfromcalipsomeasurements