Monotonic solutions for a quadratic integral equation of fractional order

In this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order\[x(t) = p(t) + h(t,x(t)) \int_{0}^{t} k(t,s)( f_1( s, I^\alpha f_2(s, x(s)))+g_1( s, I^\beta g_2(s, x(s))))ds,~t\in [0,1],\al...

Full description

Bibliographic Details
Main Authors: A. M. A. El-Sayed, Sh. M. Al-Issa
Format: Article
Language:English
Published: AIMS Press 2019-07-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/10.3934/math.2019.3.821/fulltext.html
_version_ 1819291751212384256
author A. M. A. El-Sayed
Sh. M. Al-Issa
author_facet A. M. A. El-Sayed
Sh. M. Al-Issa
author_sort A. M. A. El-Sayed
collection DOAJ
description In this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order\[x(t) = p(t) + h(t,x(t)) \int_{0}^{t} k(t,s)( f_1( s, I^\alpha f_2(s, x(s)))+g_1( s, I^\beta g_2(s, x(s))))ds,~t\in [0,1],\alpha,\beta>0\]by applying the technique of measures of weak noncompactness. As an application, we consider an initial value problem of arbitrary (fractional) order differential equations.
first_indexed 2024-12-24T03:43:37Z
format Article
id doaj.art-fa234e7024fd4dca849bb5e01ea9edff
institution Directory Open Access Journal
issn 2473-6988
language English
last_indexed 2024-12-24T03:43:37Z
publishDate 2019-07-01
publisher AIMS Press
record_format Article
series AIMS Mathematics
spelling doaj.art-fa234e7024fd4dca849bb5e01ea9edff2022-12-21T17:16:48ZengAIMS PressAIMS Mathematics2473-69882019-07-014382183010.3934/math.2019.3.821Monotonic solutions for a quadratic integral equation of fractional orderA. M. A. El-Sayed0Sh. M. Al-Issa11 Faculty of Science, Alexandria University, Alexandria, Egypt2 Faculty of Science, Lebanese International University, Lebanon 3 Faculty of Science, The International University of Beirut, LebanonIn this paper we present a global existence theorem of a positive monotonic integrable solution for the mixed type nonlinear quadratic integral equation of fractional order\[x(t) = p(t) + h(t,x(t)) \int_{0}^{t} k(t,s)( f_1( s, I^\alpha f_2(s, x(s)))+g_1( s, I^\beta g_2(s, x(s))))ds,~t\in [0,1],\alpha,\beta>0\]by applying the technique of measures of weak noncompactness. As an application, we consider an initial value problem of arbitrary (fractional) order differential equations.https://www.aimspress.com/article/10.3934/math.2019.3.821/fulltext.htmlfractional calculusquadratic integral equationfixed point theorymeasure of noncompactness
spellingShingle A. M. A. El-Sayed
Sh. M. Al-Issa
Monotonic solutions for a quadratic integral equation of fractional order
AIMS Mathematics
fractional calculus
quadratic integral equation
fixed point theory
measure of noncompactness
title Monotonic solutions for a quadratic integral equation of fractional order
title_full Monotonic solutions for a quadratic integral equation of fractional order
title_fullStr Monotonic solutions for a quadratic integral equation of fractional order
title_full_unstemmed Monotonic solutions for a quadratic integral equation of fractional order
title_short Monotonic solutions for a quadratic integral equation of fractional order
title_sort monotonic solutions for a quadratic integral equation of fractional order
topic fractional calculus
quadratic integral equation
fixed point theory
measure of noncompactness
url https://www.aimspress.com/article/10.3934/math.2019.3.821/fulltext.html
work_keys_str_mv AT amaelsayed monotonicsolutionsforaquadraticintegralequationoffractionalorder
AT shmalissa monotonicsolutionsforaquadraticintegralequationoffractionalorder