Development of fission product chemistry database ECUME for the LWR severe accident
We extended the first version of fission product (FP) chemistry database named ECUME (Effective Chemistry database of fission products Under Multiphase rEaction). The extended ECUME consists of three kinds of datasets: CRK (dataset for Chemical Reaction Kinetics), EM (Elemental Model set) and TD (Th...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
The Japan Society of Mechanical Engineers
2020-01-01
|
Series: | Mechanical Engineering Journal |
Subjects: | |
Online Access: | https://www.jstage.jst.go.jp/article/mej/7/3/7_19-00537/_pdf/-char/en |
_version_ | 1819013570975760384 |
---|---|
author | Shuhei MIWA Kunihisa NAKAJIMA Naoya MIYAHARA Shunichiro NISHIOKA Eriko SUZUKI Naoki HORIGUCHI Jiazhan LIU Faoulat MIRADJI Junpei IMOTO Afiqa MOHAMAD Gaku TAKASE Hidetoshi KARASAWA Masahiko OSAKA |
author_facet | Shuhei MIWA Kunihisa NAKAJIMA Naoya MIYAHARA Shunichiro NISHIOKA Eriko SUZUKI Naoki HORIGUCHI Jiazhan LIU Faoulat MIRADJI Junpei IMOTO Afiqa MOHAMAD Gaku TAKASE Hidetoshi KARASAWA Masahiko OSAKA |
author_sort | Shuhei MIWA |
collection | DOAJ |
description | We extended the first version of fission product (FP) chemistry database named ECUME (Effective Chemistry database of fission products Under Multiphase rEaction). The extended ECUME consists of three kinds of datasets: CRK (dataset for Chemical Reaction Kinetics), EM (Elemental Model set) and TD (ThermoDynamic dataset). The present ECUME is equipped with the CRK for the reaction of Cs-I-B-Mo-O-H system and Ru-N-O-H system in gas phase, the EM for the Cs chemical reaction with stainless steel (SS) (Cs chemisorption onto SS) and the TD for CsBO2 vapor species and solid Cs2Si4O9 and CsFeSiO4. A FP chemical reaction calculation in gas phase with the CRK of Cs-I-B-Mo-O-H system has shown the necessity of consideration of chemical reaction kinetics for more accurate estimation of Cs and I release amount into environment. The EM for Cs chemisorption has successfully achieved more accurate estimation of Cs distribution in a reactor by reproducing the effects of CsOH vapor concentration in gas phase and Si content in SS which were not considered by the existing model. The high quality vapor pressure data for CsBO2 vapor were evaluated based on the result of a high temperature mass spectrometry. Cesium species at high temperature can be estimated by the thermodynamic data with high reliability. Thermodynamic data for solid Cs2Si4O9 and CsFeSiO4 were successfully evaluated by the experiment and ab-initio based methodology, respectively. These results have shown the validity and importance of the ECUME application for the more accurate evaluation of FP chemistry during transportation in a reactor under a LWR severe accident. |
first_indexed | 2024-12-21T02:02:03Z |
format | Article |
id | doaj.art-fa28db45aa9e42df9d56d109b3f7c170 |
institution | Directory Open Access Journal |
issn | 2187-9745 |
language | English |
last_indexed | 2024-12-21T02:02:03Z |
publishDate | 2020-01-01 |
publisher | The Japan Society of Mechanical Engineers |
record_format | Article |
series | Mechanical Engineering Journal |
spelling | doaj.art-fa28db45aa9e42df9d56d109b3f7c1702022-12-21T19:19:37ZengThe Japan Society of Mechanical EngineersMechanical Engineering Journal2187-97452020-01-017319-0053719-0053710.1299/mej.19-00537mejDevelopment of fission product chemistry database ECUME for the LWR severe accidentShuhei MIWA0Kunihisa NAKAJIMA1Naoya MIYAHARA2Shunichiro NISHIOKA3Eriko SUZUKI4Naoki HORIGUCHI5Jiazhan LIU6Faoulat MIRADJI7Junpei IMOTO8Afiqa MOHAMAD9Gaku TAKASE10Hidetoshi KARASAWA11Masahiko OSAKA12Nuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyNuclear Science and Engineering Center, Japan Atomic Energy AgencyWe extended the first version of fission product (FP) chemistry database named ECUME (Effective Chemistry database of fission products Under Multiphase rEaction). The extended ECUME consists of three kinds of datasets: CRK (dataset for Chemical Reaction Kinetics), EM (Elemental Model set) and TD (ThermoDynamic dataset). The present ECUME is equipped with the CRK for the reaction of Cs-I-B-Mo-O-H system and Ru-N-O-H system in gas phase, the EM for the Cs chemical reaction with stainless steel (SS) (Cs chemisorption onto SS) and the TD for CsBO2 vapor species and solid Cs2Si4O9 and CsFeSiO4. A FP chemical reaction calculation in gas phase with the CRK of Cs-I-B-Mo-O-H system has shown the necessity of consideration of chemical reaction kinetics for more accurate estimation of Cs and I release amount into environment. The EM for Cs chemisorption has successfully achieved more accurate estimation of Cs distribution in a reactor by reproducing the effects of CsOH vapor concentration in gas phase and Si content in SS which were not considered by the existing model. The high quality vapor pressure data for CsBO2 vapor were evaluated based on the result of a high temperature mass spectrometry. Cesium species at high temperature can be estimated by the thermodynamic data with high reliability. Thermodynamic data for solid Cs2Si4O9 and CsFeSiO4 were successfully evaluated by the experiment and ab-initio based methodology, respectively. These results have shown the validity and importance of the ECUME application for the more accurate evaluation of FP chemistry during transportation in a reactor under a LWR severe accident.https://www.jstage.jst.go.jp/article/mej/7/3/7_19-00537/_pdf/-char/enfission productchemistrydatabasecesiumchemisorptionthermodynamic |
spellingShingle | Shuhei MIWA Kunihisa NAKAJIMA Naoya MIYAHARA Shunichiro NISHIOKA Eriko SUZUKI Naoki HORIGUCHI Jiazhan LIU Faoulat MIRADJI Junpei IMOTO Afiqa MOHAMAD Gaku TAKASE Hidetoshi KARASAWA Masahiko OSAKA Development of fission product chemistry database ECUME for the LWR severe accident Mechanical Engineering Journal fission product chemistry database cesium chemisorption thermodynamic |
title | Development of fission product chemistry database ECUME for the LWR severe accident |
title_full | Development of fission product chemistry database ECUME for the LWR severe accident |
title_fullStr | Development of fission product chemistry database ECUME for the LWR severe accident |
title_full_unstemmed | Development of fission product chemistry database ECUME for the LWR severe accident |
title_short | Development of fission product chemistry database ECUME for the LWR severe accident |
title_sort | development of fission product chemistry database ecume for the lwr severe accident |
topic | fission product chemistry database cesium chemisorption thermodynamic |
url | https://www.jstage.jst.go.jp/article/mej/7/3/7_19-00537/_pdf/-char/en |
work_keys_str_mv | AT shuheimiwa developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT kunihisanakajima developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT naoyamiyahara developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT shunichironishioka developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT erikosuzuki developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT naokihoriguchi developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT jiazhanliu developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT faoulatmiradji developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT junpeiimoto developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT afiqamohamad developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT gakutakase developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT hidetoshikarasawa developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident AT masahikoosaka developmentoffissionproductchemistrydatabaseecumeforthelwrsevereaccident |