Summary: | Although the outbreak of the COVID-19 pandemic caused serious restrictions on human activities in and around Shanghai, China, the period can be viewed as a helpful experiment to investigate the correlation between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> concentrations. In this study, the hourly PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> series in four cities (i.e., Shanghai, Jiaxing, Nantong and Suzhou) from 27 November 2019 to 23 March 2020 are used. The “seesaw effect” is observed in the study data. The dynamic impacts of the COVID-19 pandemic on the multifractal cross-correlations and the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> are examined in these cities. First of all, the multifractal cross-correlations, multifractality components and dynamic influences of the COVID-19 pandemic on cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities are illustrated. Furthermore, a new quantification index, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, evaluating the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> is developed, validated and compared. The multifractal cross-correlation analysis results reveal that the cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in and around Shanghai both before and during the COVID-19 partial lockdown have multifractal characteristics. Moreover, there are weaker multifractal cross-correlation degrees of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities during the COVID-19 partial lockdown. The multifractal cause analysis based on stochastic simulation illustrates that the impacts of multifractality due to the nonlinear correlation part are greater than the linear correlation part and the fat-tailed probability distribution part in and around Shanghai. The intrinsic multifractal cross-correlations decreased in all cities during the COVID-19 lockdown. However, the effects of the COVID-19 lockdown on the multifractal cross-correlations are limited from the perspective of intrinsic multifractality. The mean values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> in and around Shanghai all increase during the COVID-19 partial lockdown, which indicates that the PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> coordinated control degrees in all four cities become weaker.
|