The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China

Although the outbreak of the COVID-19 pandemic caused serious restrictions on human activities in and around Shanghai, China, the period can be viewed as a helpful experiment to investigate the correlation between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML"...

Full description

Bibliographic Details
Main Authors: Xing Li, Fang Su
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Atmosphere
Subjects:
Online Access:https://www.mdpi.com/2073-4433/13/12/1964
_version_ 1797461597082353664
author Xing Li
Fang Su
author_facet Xing Li
Fang Su
author_sort Xing Li
collection DOAJ
description Although the outbreak of the COVID-19 pandemic caused serious restrictions on human activities in and around Shanghai, China, the period can be viewed as a helpful experiment to investigate the correlation between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> concentrations. In this study, the hourly PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> series in four cities (i.e., Shanghai, Jiaxing, Nantong and Suzhou) from 27 November 2019 to 23 March 2020 are used. The “seesaw effect” is observed in the study data. The dynamic impacts of the COVID-19 pandemic on the multifractal cross-correlations and the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> are examined in these cities. First of all, the multifractal cross-correlations, multifractality components and dynamic influences of the COVID-19 pandemic on cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities are illustrated. Furthermore, a new quantification index, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, evaluating the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> is developed, validated and compared. The multifractal cross-correlation analysis results reveal that the cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in and around Shanghai both before and during the COVID-19 partial lockdown have multifractal characteristics. Moreover, there are weaker multifractal cross-correlation degrees of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities during the COVID-19 partial lockdown. The multifractal cause analysis based on stochastic simulation illustrates that the impacts of multifractality due to the nonlinear correlation part are greater than the linear correlation part and the fat-tailed probability distribution part in and around Shanghai. The intrinsic multifractal cross-correlations decreased in all cities during the COVID-19 lockdown. However, the effects of the COVID-19 lockdown on the multifractal cross-correlations are limited from the perspective of intrinsic multifractality. The mean values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> in and around Shanghai all increase during the COVID-19 partial lockdown, which indicates that the PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> coordinated control degrees in all four cities become weaker.
first_indexed 2024-03-09T17:21:40Z
format Article
id doaj.art-fa349515e7a9454a924f9af5c886350c
institution Directory Open Access Journal
issn 2073-4433
language English
last_indexed 2024-03-09T17:21:40Z
publishDate 2022-11-01
publisher MDPI AG
record_format Article
series Atmosphere
spelling doaj.art-fa349515e7a9454a924f9af5c886350c2023-11-24T13:10:28ZengMDPI AGAtmosphere2073-44332022-11-011312196410.3390/atmos13121964The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, ChinaXing Li0Fang Su1School of Finance, Shanghai University of Finance and Economics, Shanghai 200433, ChinaSchool of Finance, Shanghai University of Finance and Economics, Shanghai 200433, ChinaAlthough the outbreak of the COVID-19 pandemic caused serious restrictions on human activities in and around Shanghai, China, the period can be viewed as a helpful experiment to investigate the correlation between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> concentrations. In this study, the hourly PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> series in four cities (i.e., Shanghai, Jiaxing, Nantong and Suzhou) from 27 November 2019 to 23 March 2020 are used. The “seesaw effect” is observed in the study data. The dynamic impacts of the COVID-19 pandemic on the multifractal cross-correlations and the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> are examined in these cities. First of all, the multifractal cross-correlations, multifractality components and dynamic influences of the COVID-19 pandemic on cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities are illustrated. Furthermore, a new quantification index, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula>, evaluating the coordinated control degree of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> is developed, validated and compared. The multifractal cross-correlation analysis results reveal that the cross-correlations between PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula> and O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in and around Shanghai both before and during the COVID-19 partial lockdown have multifractal characteristics. Moreover, there are weaker multifractal cross-correlation degrees of PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> in four cities during the COVID-19 partial lockdown. The multifractal cause analysis based on stochastic simulation illustrates that the impacts of multifractality due to the nonlinear correlation part are greater than the linear correlation part and the fat-tailed probability distribution part in and around Shanghai. The intrinsic multifractal cross-correlations decreased in all cities during the COVID-19 lockdown. However, the effects of the COVID-19 lockdown on the multifractal cross-correlations are limited from the perspective of intrinsic multifractality. The mean values of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>ζ</mi></semantics></math></inline-formula> in and around Shanghai all increase during the COVID-19 partial lockdown, which indicates that the PM<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mrow><mn>2.5</mn></mrow></msub></semantics></math></inline-formula>-O<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mrow></mrow><mn>3</mn></msub></semantics></math></inline-formula> coordinated control degrees in all four cities become weaker.https://www.mdpi.com/2073-4433/13/12/1964COVID-19 lockdownPM<sub>2.5</sub>O<sub>3</sub>MF-DCCAmultifractal cause analysiscoordinated control degree
spellingShingle Xing Li
Fang Su
The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
Atmosphere
COVID-19 lockdown
PM<sub>2.5</sub>
O<sub>3</sub>
MF-DCCA
multifractal cause analysis
coordinated control degree
title The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
title_full The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
title_fullStr The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
title_full_unstemmed The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
title_short The Dynamic Impacts of COVID-19 Pandemic Lockdown on the Multifractal Cross-Correlations between PM<sub>2.5</sub> and O<sub>3</sub> Concentrations in and around Shanghai, China
title_sort dynamic impacts of covid 19 pandemic lockdown on the multifractal cross correlations between pm sub 2 5 sub and o sub 3 sub concentrations in and around shanghai china
topic COVID-19 lockdown
PM<sub>2.5</sub>
O<sub>3</sub>
MF-DCCA
multifractal cause analysis
coordinated control degree
url https://www.mdpi.com/2073-4433/13/12/1964
work_keys_str_mv AT xingli thedynamicimpactsofcovid19pandemiclockdownonthemultifractalcrosscorrelationsbetweenpmsub25subandosub3subconcentrationsinandaroundshanghaichina
AT fangsu thedynamicimpactsofcovid19pandemiclockdownonthemultifractalcrosscorrelationsbetweenpmsub25subandosub3subconcentrationsinandaroundshanghaichina
AT xingli dynamicimpactsofcovid19pandemiclockdownonthemultifractalcrosscorrelationsbetweenpmsub25subandosub3subconcentrationsinandaroundshanghaichina
AT fangsu dynamicimpactsofcovid19pandemiclockdownonthemultifractalcrosscorrelationsbetweenpmsub25subandosub3subconcentrationsinandaroundshanghaichina