Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos

We consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurc...

Full description

Bibliographic Details
Main Authors: V. N. Belykh, M. I. Bolotov, G. V. Osipov
Format: Article
Language:English
Published: Yaroslavl State University 2015-10-01
Series:Моделирование и анализ информационных систем
Subjects:
Online Access:https://www.mais-journal.ru/jour/article/view/280
_version_ 1797877917226631168
author V. N. Belykh
M. I. Bolotov
G. V. Osipov
author_facet V. N. Belykh
M. I. Bolotov
G. V. Osipov
author_sort V. N. Belykh
collection DOAJ
description We consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony. We establish that return transitions are hysteretic in the case of large inertia.
first_indexed 2024-04-10T02:24:28Z
format Article
id doaj.art-fa388a91193440fc98ef61776b239912
institution Directory Open Access Journal
issn 1818-1015
2313-5417
language English
last_indexed 2024-04-10T02:24:28Z
publishDate 2015-10-01
publisher Yaroslavl State University
record_format Article
series Моделирование и анализ информационных систем
spelling doaj.art-fa388a91193440fc98ef61776b2399122023-03-13T08:07:34ZengYaroslavl State UniversityМоделирование и анализ информационных систем1818-10152313-54172015-10-0122559560810.18255/1818-1015-2015-5-595-608261Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of ChaosV. N. Belykh0M. I. Bolotov1G. V. Osipov2Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603950, Россия Волжский государственный университет водного транспорта, ул. Нестерова, 5, Нижний Новгород, 603950, РоссияНижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603950, Россия,Нижегородский государственный университет им. Н.И. Лобачевского, пр. Гагарина, 23, Нижний Новгород, 603950, РоссиWe consider a finite-dimensional model of phase oscillators with inertia in the case of star configuration of coupling. The system of equations is reduced to a nonlinearly coupled system of pendulum equations. We prove that the transition from synchronous to asynchronous oscillations occurs via bifurcation of saddle-node equilibrium. In this connection the asynchronous regime can be partially synchronous rotations. We find that the reverse transition from asynchronous to synchronous regime occurs via bifurcation of homoclinic orbit both of the saddle equilibrium point and of the saddle periodic orbit. In the case of homoclinic loop of the saddle point the synchrony appears only from asynchronous mode without partially synchronized rotations. In the case of the homoclinic curve of the saddle periodic orbit the system undergoes a chaotic rotation regime which results in a random return to synchrony. We establish that return transitions are hysteretic in the case of large inertia.https://www.mais-journal.ru/jour/article/view/280осцилляторысинхронизациямаятникзвезда
spellingShingle V. N. Belykh
M. I. Bolotov
G. V. Osipov
Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
Моделирование и анализ информационных систем
осцилляторы
синхронизация
маятник
звезда
title Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
title_full Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
title_fullStr Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
title_full_unstemmed Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
title_short Kuramoto Phase Model with Inertia: Bifurcations Leading to the Loss of Synchrony and to the Emergence of Chaos
title_sort kuramoto phase model with inertia bifurcations leading to the loss of synchrony and to the emergence of chaos
topic осцилляторы
синхронизация
маятник
звезда
url https://www.mais-journal.ru/jour/article/view/280
work_keys_str_mv AT vnbelykh kuramotophasemodelwithinertiabifurcationsleadingtothelossofsynchronyandtotheemergenceofchaos
AT mibolotov kuramotophasemodelwithinertiabifurcationsleadingtothelossofsynchronyandtotheemergenceofchaos
AT gvosipov kuramotophasemodelwithinertiabifurcationsleadingtothelossofsynchronyandtotheemergenceofchaos