Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance

We consider a Metropolis–Hastings method with proposal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>(</mo><mi>x</mi><m...

Full description

Bibliographic Details
Main Author: Samuel Livingstone
Format: Article
Language:English
Published: MDPI AG 2021-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/4/341
_version_ 1797412608200933376
author Samuel Livingstone
author_facet Samuel Livingstone
author_sort Samuel Livingstone
collection DOAJ
description We consider a Metropolis–Hastings method with proposal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mi>G</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>x</i> is the current state, and study its ergodicity properties. We show that suitable choices of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> can change these ergodicity properties compared to the Random Walk Metropolis case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>Σ</mo><mo>)</mo></mrow></semantics></math></inline-formula>, either for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails of the distribution then geometric ergodicity can be established when the target distribution for the algorithm has tails that are heavier than exponential, in contrast to the Random Walk Metropolis case, but that the growth rate must be carefully controlled to prevent the rejection rate approaching unity. We also illustrate that a judicious choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> can result in a geometrically ergodic chain when probability concentrates on an ever narrower ridge in the tails, something that is again not true for the Random Walk Metropolis.
first_indexed 2024-03-09T05:05:35Z
format Article
id doaj.art-fa3b5449c86040baa4ea8aedf2ad4b05
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T05:05:35Z
publishDate 2021-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-fa3b5449c86040baa4ea8aedf2ad4b052023-12-03T12:56:06ZengMDPI AGMathematics2227-73902021-02-019434110.3390/math9040341Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal CovarianceSamuel Livingstone0Department of Statistical Science, University College London, London WC1E 6BT, UKWe consider a Metropolis–Hastings method with proposal <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mi>G</mi><msup><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>)</mo></mrow></semantics></math></inline-formula>, where <i>x</i> is the current state, and study its ergodicity properties. We show that suitable choices of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> can change these ergodicity properties compared to the Random Walk Metropolis case <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="script">N</mi><mo>(</mo><mi>x</mi><mo>,</mo><mi>h</mi><mo>Σ</mo><mo>)</mo></mrow></semantics></math></inline-formula>, either for better or worse. We find that if the proposal variance is allowed to grow unboundedly in the tails of the distribution then geometric ergodicity can be established when the target distribution for the algorithm has tails that are heavier than exponential, in contrast to the Random Walk Metropolis case, but that the growth rate must be carefully controlled to prevent the rejection rate approaching unity. We also illustrate that a judicious choice of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>G</mi><mo>(</mo><mi>x</mi><mo>)</mo></mrow></semantics></math></inline-formula> can result in a geometrically ergodic chain when probability concentrates on an ever narrower ridge in the tails, something that is again not true for the Random Walk Metropolis.https://www.mdpi.com/2227-7390/9/4/341Monte CarloMCMCMarkov chainscomputational statisticsbayesian inference
spellingShingle Samuel Livingstone
Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
Mathematics
Monte Carlo
MCMC
Markov chains
computational statistics
bayesian inference
title Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
title_full Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
title_fullStr Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
title_full_unstemmed Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
title_short Geometric Ergodicity of the Random Walk Metropolis with Position-Dependent Proposal Covariance
title_sort geometric ergodicity of the random walk metropolis with position dependent proposal covariance
topic Monte Carlo
MCMC
Markov chains
computational statistics
bayesian inference
url https://www.mdpi.com/2227-7390/9/4/341
work_keys_str_mv AT samuellivingstone geometricergodicityoftherandomwalkmetropoliswithpositiondependentproposalcovariance