Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection
Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection...
Main Authors: | , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2020-07-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/5.0008281 |
_version_ | 1818777819529871360 |
---|---|
author | Hemi H. Gandhi David Pastor Tuan T. Tran Stefan Kalchmair Lachlan A. Smillie Jonathan P. Mailoa Ruggero Milazzo Enrico Napolitani Marko Loncar James S. Williams Michael J. Aziz Eric Mazur |
author_facet | Hemi H. Gandhi David Pastor Tuan T. Tran Stefan Kalchmair Lachlan A. Smillie Jonathan P. Mailoa Ruggero Milazzo Enrico Napolitani Marko Loncar James S. Williams Michael J. Aziz Eric Mazur |
author_sort | Hemi H. Gandhi |
collection | DOAJ |
description | Obtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors. |
first_indexed | 2024-12-18T11:34:53Z |
format | Article |
id | doaj.art-fa3be7a8a9254ba99d46f6ff635d8021 |
institution | Directory Open Access Journal |
issn | 2158-3226 |
language | English |
last_indexed | 2024-12-18T11:34:53Z |
publishDate | 2020-07-01 |
publisher | AIP Publishing LLC |
record_format | Article |
series | AIP Advances |
spelling | doaj.art-fa3be7a8a9254ba99d46f6ff635d80212022-12-21T21:09:33ZengAIP Publishing LLCAIP Advances2158-32262020-07-01107075028075028-610.1063/5.0008281Chalcogen-hyperdoped germanium for short-wavelength infrared photodetectionHemi H. Gandhi0David Pastor1Tuan T. Tran2Stefan Kalchmair3Lachlan A. Smillie4Jonathan P. Mailoa5Ruggero Milazzo6Enrico Napolitani7Marko Loncar8James S. Williams9Michael J. Aziz10Eric Mazur11Harvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USAHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USADepartment of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, AustraliaHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USADepartment of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, AustraliaDepartment of Physics and Astronomy, Ångström Laboratory, Uppsala University, P.O. Box 516, SE-751 20 Uppsala, SwedenDipartimento di Fisica e Astronomia, Università di Padova and CNR-IMM, Via Marzolo 8, I-35131 Padova, ItalyDipartimento di Fisica e Astronomia, Università di Padova and CNR-IMM, Via Marzolo 8, I-35131 Padova, ItalyHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USADepartment of Electronic Materials Engineering, Research School of Physics and Engineering, Australian National University, Canberra, ACT 0200, AustraliaHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USAHarvard John A. Paulson School of Engineering and Applied Sciences, Cambridge, Massachusetts 02138, USAObtaining short-wavelength-infrared (SWIR; 1.4 μm–3.0 μm) room-temperature photodetection in a low-cost, group IV semiconductor is desirable for numerous applications. We demonstrate a non-equilibrium method for hyperdoping germanium with selenium or tellurium for dopant-mediated SWIR photodetection. By ion-implanting Se or Te into Ge wafers and restoring crystallinity with pulsed laser melting induced rapid solidification, we obtain single crystalline materials with peak Se and Te concentrations of 1020 cm−3 (104 times the solubility limits). These hyperdoped materials exhibit sub-bandgap absorption of light up to wavelengths of at least 3.0 μm, with their sub-bandgap optical absorption coefficients comparable to those of commercial SWIR photodetection materials. Although previous studies of Ge-based photodetectors have reported a sub-bandgap optoelectronic response only at low temperature, we report room-temperature sub-bandgap SWIR photodetection at wavelengths as long as 3.0 μm from rudimentary hyperdoped Ge:Se and Ge:Te photodetectors.http://dx.doi.org/10.1063/5.0008281 |
spellingShingle | Hemi H. Gandhi David Pastor Tuan T. Tran Stefan Kalchmair Lachlan A. Smillie Jonathan P. Mailoa Ruggero Milazzo Enrico Napolitani Marko Loncar James S. Williams Michael J. Aziz Eric Mazur Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection AIP Advances |
title | Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection |
title_full | Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection |
title_fullStr | Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection |
title_full_unstemmed | Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection |
title_short | Chalcogen-hyperdoped germanium for short-wavelength infrared photodetection |
title_sort | chalcogen hyperdoped germanium for short wavelength infrared photodetection |
url | http://dx.doi.org/10.1063/5.0008281 |
work_keys_str_mv | AT hemihgandhi chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT davidpastor chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT tuanttran chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT stefankalchmair chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT lachlanasmillie chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT jonathanpmailoa chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT ruggeromilazzo chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT enriconapolitani chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT markoloncar chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT jamesswilliams chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT michaeljaziz chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection AT ericmazur chalcogenhyperdopedgermaniumforshortwavelengthinfraredphotodetection |