The (2+1)-dimensional hyperbolic nonlinear Schrödinger equation and its optical solitons

A comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrödinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equ...

Full description

Bibliographic Details
Main Authors: umitru Baleanu, Kamyar Hosseini, Soheil Salahshour, Khadijeh Sadri, Mohammad Mirzazadeh, Choonkil Park, Ali Ahmadian
Format: Article
Language:English
Published: AIMS Press 2021-06-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2021556?viewType=HTML
Description
Summary:A comprehensive study on the (2+1)-dimensional hyperbolic nonlinear Schrödinger (2D-HNLS) equation describing the propagation of electromagnetic fields in self-focusing and normally dispersive planar wave guides in optics is conducted in the current paper. To this end, after reducing the 2D-HNLS equation to a one-dimensional nonlinear ordinary differential (1D-NLOD) equation in the real regime using a traveling wave transformation, its optical solitons are formally obtained through a group of well-established methods such as the exponential and Kudryashov methods. Some graphical representations regarding optical solitons that are categorized as bright and dark solitons are considered to clarify the dynamics of the obtained solutions. It is noted that some of optical solitons retrieved in the current study are new and have been not retrieved previously.
ISSN:2473-6988