Comparison between Underground Cable and Overhead Line for a Low-Voltage Direct Current Distribution Network Serving Communication Repeater

This paper compares the differences in economic feasibility and dynamic characteristics between underground (U/G) cable and overhead (O/H) line for low-voltage direct current (LVDC) distribution. Numerous low loaded long-distance distribution networks served by medium-voltage alternative current (MV...

Full description

Bibliographic Details
Main Authors: Jae-Han Kim, Ju-Yong Kim, Jin-Tae Cho, Il-Keun Song, Bo-Min Kweon, Il-Yop Chung, Joon-Ho Choi
Format: Article
Language:English
Published: MDPI AG 2014-03-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/7/3/1656
Description
Summary:This paper compares the differences in economic feasibility and dynamic characteristics between underground (U/G) cable and overhead (O/H) line for low-voltage direct current (LVDC) distribution. Numerous low loaded long-distance distribution networks served by medium-voltage alternative current (MVAC) distribution lines exist in the Korean distribution network. This is an unavoidable choice to compensate voltage drop, therefore, excessive cost is expended for the amount of electrical power load. The Korean Electric Power Corporation (KEPCO) is consequently seeking a solution to replace the MVAC distribution line with a LVDC distribution line, reducing costs and providing better quality direct current (DC) electricity. A LVDC distribution network can be installed with U/G cables or O/H lines. In this paper, a realistic MVAC distribution network in a mountainous area was selected as the target model to replace with LVDC. A 30 year net present value (NPV) analysis of the economic feasibility was conducted to compare the cost of the two types of distribution line. A simulation study compared the results of the DC line fault with the power system computer aided design/electro-magnetic transient direct current (PSCAD/EMTDC). The economic feasibility evaluation and simulation study results will be used to select the applicable type of LVDC distribution network.
ISSN:1996-1073