Estimating dates of origin and end of COVID-19 epidemics
Estimating the date at which an epidemic started in a country and the date at which it can end depending on interventions intensity are important to guide public health responses. Both are potentially shaped by similar factors including stochasticity (due to small population sizes), superspreading e...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Peer Community In
2021-12-01
|
Series: | Peer Community Journal |
Online Access: | https://peercommunityjournal.org/articles/10.24072/pcjournal.63/ |
_version_ | 1797651217378181120 |
---|---|
author | Beneteau, Thomas Elie, Baptiste Sofonea, Mircea T. Alizon, Samuel |
author_facet | Beneteau, Thomas Elie, Baptiste Sofonea, Mircea T. Alizon, Samuel |
author_sort | Beneteau, Thomas |
collection | DOAJ |
description | Estimating the date at which an epidemic started in a country and the date at which it can end depending on interventions intensity are important to guide public health responses. Both are potentially shaped by similar factors including stochasticity (due to small population sizes), superspreading events, and memory effects (the fact that the occurrence of some events, e.g. recovering from an infection, depend on the past, e.g. the number of days since the infection). Focusing on COVID-19 epidemics, we develop and analyse mathematical models to explore how these three factors may affect early and final epidemic dynamics. Regarding the date of origin, we find limited effects on the mean estimates, but strong effects on their variances. Regarding the date of extinction following lockdown onset, mean values decrease with stochasticity or with the presence of superspreading events. These results underline the importance of accounting for heterogeneity in infection history and transmission patterns to accurately capture early and late epidemic dynamics. |
first_indexed | 2024-03-11T16:11:46Z |
format | Article |
id | doaj.art-fa854b88b8e546e0babd29691e0fa13e |
institution | Directory Open Access Journal |
issn | 2804-3871 |
language | English |
last_indexed | 2024-03-11T16:11:46Z |
publishDate | 2021-12-01 |
publisher | Peer Community In |
record_format | Article |
series | Peer Community Journal |
spelling | doaj.art-fa854b88b8e546e0babd29691e0fa13e2023-10-24T14:38:24ZengPeer Community InPeer Community Journal2804-38712021-12-01110.24072/pcjournal.6310.24072/pcjournal.63Estimating dates of origin and end of COVID-19 epidemicsBeneteau, Thomas0https://orcid.org/0000-0003-4885-696XElie, Baptiste1https://orcid.org/0000-0002-3832-6650Sofonea, Mircea T.2https://orcid.org/0000-0002-4499-0435Alizon, Samuel3https://orcid.org/0000-0002-0779-9543MIVEGEC, Univ Montpellier, CNRS, IRD – Montpellier, FranceMIVEGEC, Univ Montpellier, CNRS, IRD – Montpellier, FranceMIVEGEC, Univ Montpellier, CNRS, IRD – Montpellier, FranceMIVEGEC, Univ Montpellier, CNRS, IRD – Montpellier, FranceEstimating the date at which an epidemic started in a country and the date at which it can end depending on interventions intensity are important to guide public health responses. Both are potentially shaped by similar factors including stochasticity (due to small population sizes), superspreading events, and memory effects (the fact that the occurrence of some events, e.g. recovering from an infection, depend on the past, e.g. the number of days since the infection). Focusing on COVID-19 epidemics, we develop and analyse mathematical models to explore how these three factors may affect early and final epidemic dynamics. Regarding the date of origin, we find limited effects on the mean estimates, but strong effects on their variances. Regarding the date of extinction following lockdown onset, mean values decrease with stochasticity or with the presence of superspreading events. These results underline the importance of accounting for heterogeneity in infection history and transmission patterns to accurately capture early and late epidemic dynamics.https://peercommunityjournal.org/articles/10.24072/pcjournal.63/ |
spellingShingle | Beneteau, Thomas Elie, Baptiste Sofonea, Mircea T. Alizon, Samuel Estimating dates of origin and end of COVID-19 epidemics Peer Community Journal |
title | Estimating dates of origin and end of COVID-19 epidemics |
title_full | Estimating dates of origin and end of COVID-19 epidemics |
title_fullStr | Estimating dates of origin and end of COVID-19 epidemics |
title_full_unstemmed | Estimating dates of origin and end of COVID-19 epidemics |
title_short | Estimating dates of origin and end of COVID-19 epidemics |
title_sort | estimating dates of origin and end of covid 19 epidemics |
url | https://peercommunityjournal.org/articles/10.24072/pcjournal.63/ |
work_keys_str_mv | AT beneteauthomas estimatingdatesoforiginandendofcovid19epidemics AT eliebaptiste estimatingdatesoforiginandendofcovid19epidemics AT sofoneamirceat estimatingdatesoforiginandendofcovid19epidemics AT alizonsamuel estimatingdatesoforiginandendofcovid19epidemics |