The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx
To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a propert...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
eLife Sciences Publications Ltd
2021-12-01
|
Series: | eLife |
Subjects: | |
Online Access: | https://elifesciences.org/articles/74172 |
_version_ | 1797998477688438784 |
---|---|
author | Luigi Prisco Stephan Hubertus Deimel Hanna Yeliseyeva André Fiala Gaia Tavosanis |
author_facet | Luigi Prisco Stephan Hubertus Deimel Hanna Yeliseyeva André Fiala Gaia Tavosanis |
author_sort | Luigi Prisco |
collection | DOAJ |
description | To identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation. |
first_indexed | 2024-04-11T10:49:25Z |
format | Article |
id | doaj.art-fa87f2ac90604ac6bf8114096d72cd9a |
institution | Directory Open Access Journal |
issn | 2050-084X |
language | English |
last_indexed | 2024-04-11T10:49:25Z |
publishDate | 2021-12-01 |
publisher | eLife Sciences Publications Ltd |
record_format | Article |
series | eLife |
spelling | doaj.art-fa87f2ac90604ac6bf8114096d72cd9a2022-12-22T04:28:58ZengeLife Sciences Publications LtdeLife2050-084X2021-12-011010.7554/eLife.74172The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyxLuigi Prisco0https://orcid.org/0000-0002-5896-9346Stephan Hubertus Deimel1https://orcid.org/0000-0002-4678-4926Hanna Yeliseyeva2André Fiala3https://orcid.org/0000-0002-9745-5145Gaia Tavosanis4https://orcid.org/0000-0002-8679-5515Dynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Bonn, GermanyDepartment of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, GermanyDynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Bonn, GermanyDepartment of Molecular Neurobiology of Behavior, University of Göttingen, Göttingen, GermanyDynamics of neuronal circuits, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; LIMES, Rheinische Friedrich Wilhelms Universität Bonn, Bonn, GermanyTo identify and memorize discrete but similar environmental inputs, the brain needs to distinguish between subtle differences of activity patterns in defined neuronal populations. The Kenyon cells (KCs) of the Drosophila adult mushroom body (MB) respond sparsely to complex olfactory input, a property that is thought to support stimuli discrimination in the MB. To understand how this property emerges, we investigated the role of the inhibitory anterior paired lateral (APL) neuron in the input circuit of the MB, the calyx. Within the calyx, presynaptic boutons of projection neurons (PNs) form large synaptic microglomeruli (MGs) with dendrites of postsynaptic KCs. Combining electron microscopy (EM) data analysis and in vivo calcium imaging, we show that APL, via inhibitory and reciprocal synapses targeting both PN boutons and KC dendrites, normalizes odour-evoked representations in MGs of the calyx. APL response scales with the PN input strength and is regionalized around PN input distribution. Our data indicate that the formation of a sparse code by the KCs requires APL-driven normalization of their MG postsynaptic responses. This work provides experimental insights on how inhibition shapes sensory information representation in a higher brain centre, thereby supporting stimuli discrimination and allowing for efficient associative memory formation.https://elifesciences.org/articles/74172mushroom bodyAPLmicroglomerulussparse codinginhibitionpattern separation |
spellingShingle | Luigi Prisco Stephan Hubertus Deimel Hanna Yeliseyeva André Fiala Gaia Tavosanis The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx eLife mushroom body APL microglomerulus sparse coding inhibition pattern separation |
title | The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx |
title_full | The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx |
title_fullStr | The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx |
title_full_unstemmed | The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx |
title_short | The anterior paired lateral neuron normalizes odour-evoked activity in the Drosophila mushroom body calyx |
title_sort | anterior paired lateral neuron normalizes odour evoked activity in the drosophila mushroom body calyx |
topic | mushroom body APL microglomerulus sparse coding inhibition pattern separation |
url | https://elifesciences.org/articles/74172 |
work_keys_str_mv | AT luigiprisco theanteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT stephanhubertusdeimel theanteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT hannayeliseyeva theanteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT andrefiala theanteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT gaiatavosanis theanteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT luigiprisco anteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT stephanhubertusdeimel anteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT hannayeliseyeva anteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT andrefiala anteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx AT gaiatavosanis anteriorpairedlateralneuronnormalizesodourevokedactivityinthedrosophilamushroombodycalyx |