On the algebraic structure of Weihrauch degrees

We introduce two new operations (compositional products and implication) on Weihrauch degrees, and investigate the overall algebraic structure. The validity of the various distributivity laws is studied and forms the basis for a comparison with similar structures such as residuated lattices and conc...

Full description

Bibliographic Details
Main Authors: Vasco Brattka, Arno Pauly
Format: Article
Language:English
Published: Logical Methods in Computer Science e.V. 2018-10-01
Series:Logical Methods in Computer Science
Subjects:
Online Access:https://lmcs.episciences.org/3854/pdf
Description
Summary:We introduce two new operations (compositional products and implication) on Weihrauch degrees, and investigate the overall algebraic structure. The validity of the various distributivity laws is studied and forms the basis for a comparison with similar structures such as residuated lattices and concurrent Kleene algebras. Introducing the notion of an ideal with respect to the compositional product, we can consider suitable quotients of the Weihrauch degrees. We also prove some specific characterizations using the implication. In order to introduce and study compositional products and implications, we introduce and study a function space of multi-valued continuous functions. This space turns out to be particularly well-behaved for effectively traceable spaces that are closely related to admissibly represented spaces.
ISSN:1860-5974