An effective drug-disease associations prediction model based on graphic representation learning over multi-biomolecular network
Abstract Background Drug-disease associations (DDAs) can provide important information for exploring the potential efficacy of drugs. However, up to now, there are still few DDAs verified by experiments. Previous evidence indicates that the combination of information would be conducive to the discov...
Những tác giả chính: | Hanjing Jiang, Yabing Huang |
---|---|
Định dạng: | Bài viết |
Ngôn ngữ: | English |
Được phát hành: |
BMC
2022-01-01
|
Loạt: | BMC Bioinformatics |
Những chủ đề: | |
Truy cập trực tuyến: | https://doi.org/10.1186/s12859-021-04553-2 |
Những quyển sách tương tự
-
Curvature-enhanced graph convolutional network for biomolecular interaction prediction
Bằng: Cong Shen, et al.
Được phát hành: (2024-12-01) -
MGRL: Predicting Drug-Disease Associations Based on Multi-Graph Representation Learning
Bằng: Bo-Wei Zhao, et al.
Được phát hành: (2021-04-01) -
Decoding the physical principles of two-component biomolecular phase separation
Bằng: Yaojun Zhang, et al.
Được phát hành: (2021-03-01) -
The exchange dynamics of biomolecular condensates
Bằng: Yaojun Zhang, et al.
Được phát hành: (2024-09-01) -
The advancement of biosensor design and construction utilizing biomolecular motors
Bằng: Jinhong Zhao, et al.
Được phát hành: (2025-06-01)