Correction to "Fixed Points of Maps of a Nonaspherical Wedge"

<p/> <p>In the original paper, it was assumed that a selfmap of <inline-formula> <graphic file="1687-1812-2010-820265-i1.gif"/></inline-formula>, the wedge of a real projective space <inline-formula> <graphic file="1687-1812-2010-820265-i2.gif&qu...

Full description

Bibliographic Details
Main Authors: Merrill Keith, Brown RobertF, Khamsemanan Nirattaya, Ericksen Adam, Kim Seungwon
Format: Article
Language:English
Published: SpringerOpen 2010-01-01
Series:Fixed Point Theory and Applications
Online Access:http://www.fixedpointtheoryandapplications.com/content/2010/820265
Description
Summary:<p/> <p>In the original paper, it was assumed that a selfmap of <inline-formula> <graphic file="1687-1812-2010-820265-i1.gif"/></inline-formula>, the wedge of a real projective space <inline-formula> <graphic file="1687-1812-2010-820265-i2.gif"/></inline-formula> and a circle <inline-formula> <graphic file="1687-1812-2010-820265-i3.gif"/></inline-formula>, is homotopic to a map that takes <inline-formula> <graphic file="1687-1812-2010-820265-i4.gif"/></inline-formula> to itself. An example is presented of a selfmap of <inline-formula> <graphic file="1687-1812-2010-820265-i5.gif"/></inline-formula> that fails to have this property. However, all the results of the paper are correct for maps of the pair <inline-formula> <graphic file="1687-1812-2010-820265-i6.gif"/></inline-formula>.</p>
ISSN:1687-1820
1687-1812