KINETICS AND EQUILIBRIUM STUDIES OF Cr(VI) METAL ION REMEDIATION BY ARACHIS HYPOGEA SHELLS: A GREEN APPROACH

Arachis hypogea shells (ground nut shells), a lignocellulosic waste biomass, was evaluated for sequestering of Cr(VI) from synthetic wastewater. Arachis hypogea shells (AHS) were used in three different forms, viz. natural (AHSN), immobilized in the form of beads (AHSB), and in the form of activated...

Full description

Bibliographic Details
Main Authors: Dhiraj Sud, Garima Mahajan
Format: Article
Language:English
Published: North Carolina State University 2011-06-01
Series:BioResources
Subjects:
Online Access:http://www.ncsu.edu/bioresources/BioRes_06/BioRes_06_3_3324_Mahajan_S_Cr_Remediation_Arachis_Green_Appr_1486.pdf
Description
Summary:Arachis hypogea shells (ground nut shells), a lignocellulosic waste biomass, was evaluated for sequestering of Cr(VI) from synthetic wastewater. Arachis hypogea shells (AHS) were used in three different forms, viz. natural (AHSN), immobilized in the form of beads (AHSB), and in the form of activated carbon (AHSC). Batch experiments were performed for the removal of hexavalent chromium. Effects of pH adsorbent dose, initial metal ion concentration, stirring speed, and contact time were investigated. The removal of metal ions was dependent on the physico-chemical characteristics of the adsorbent, adsorbate concentration, and other studied process parameters. Maximum metal removal for Cr(VI) was observed at pH 2.0. The experimental data were analyzed based on Freundlich and Langmuir adsorption isotherms. Kinetic studies indicated that the adsorption of metal ions followed a pseudo-second-order equation.
ISSN:1930-2126