Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch

Defects in coffee beans can significantly impact the quality of coffee production, which can lead to a decrease in the price of coffee beans in the global coffee market. Currently, coffee bean sorting is still conventionally done to separate defective and non-defective coffee beans, which is a time-...

Full description

Bibliographic Details
Main Authors: Aryo Michael, Juprianus Rusman
Format: Article
Language:Indonesian
Published: Universitas Merdeka Malang 2023-06-01
Series:Jurnal Teknologi dan Manajemen Informatika
Subjects:
Online Access:https://jurnal.unmer.ac.id/index.php/jtmi/article/view/10035
_version_ 1797738090322722816
author Aryo Michael
Juprianus Rusman
author_facet Aryo Michael
Juprianus Rusman
author_sort Aryo Michael
collection DOAJ
description Defects in coffee beans can significantly impact the quality of coffee production, which can lead to a decrease in the price of coffee beans in the global coffee market. Currently, coffee bean sorting is still conventionally done to separate defective and non-defective coffee beans, which is a time-consuming process and subject to subjective selection, potentially leading to a decline in the quality of the resulting coffee beans. The objective of this research is to design and measure the performance of deep learning algorithms, CNN MobilNetV2 and DenseNet201, using transfer learning methods where hyperparameter tuning grid search is employed to select the optimal combination of hyperparameters for the defective coffee bean classification model. The study began by collecting a dataset of images of abnormal and defective coffee beans, building a classification model using transfer learning methods that utilized pre-trained models and selecting the best hyperparameters, training the model, and finally testing the created classification model. The research results indicate that the pre-trained MobileNetV2 model with hyperparameter tuning achieved an accuracy of 90%, and the pre-trained DenseNet201 model achieved an accuracy of 93%. The research results indicate that this approach enables the model to achieve excellent performance in recognizing and classifying defective coffee beans with high accuracy
first_indexed 2024-03-12T13:37:53Z
format Article
id doaj.art-fab37c2aa9b04fdab340baa6154e9b13
institution Directory Open Access Journal
issn 1693-6604
2580-8044
language Indonesian
last_indexed 2024-03-12T13:37:53Z
publishDate 2023-06-01
publisher Universitas Merdeka Malang
record_format Article
series Jurnal Teknologi dan Manajemen Informatika
spelling doaj.art-fab37c2aa9b04fdab340baa6154e9b132023-08-24T02:28:39ZindUniversitas Merdeka MalangJurnal Teknologi dan Manajemen Informatika1693-66042580-80442023-06-0191374510.26905/jtmi.v9i1.100353972Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning GridsearchAryo Michael0Juprianus Rusman1Universitas Kristen Indonesia TorajaUniversitas Kristen Indonesia TorajaDefects in coffee beans can significantly impact the quality of coffee production, which can lead to a decrease in the price of coffee beans in the global coffee market. Currently, coffee bean sorting is still conventionally done to separate defective and non-defective coffee beans, which is a time-consuming process and subject to subjective selection, potentially leading to a decline in the quality of the resulting coffee beans. The objective of this research is to design and measure the performance of deep learning algorithms, CNN MobilNetV2 and DenseNet201, using transfer learning methods where hyperparameter tuning grid search is employed to select the optimal combination of hyperparameters for the defective coffee bean classification model. The study began by collecting a dataset of images of abnormal and defective coffee beans, building a classification model using transfer learning methods that utilized pre-trained models and selecting the best hyperparameters, training the model, and finally testing the created classification model. The research results indicate that the pre-trained MobileNetV2 model with hyperparameter tuning achieved an accuracy of 90%, and the pre-trained DenseNet201 model achieved an accuracy of 93%. The research results indicate that this approach enables the model to achieve excellent performance in recognizing and classifying defective coffee beans with high accuracyhttps://jurnal.unmer.ac.id/index.php/jtmi/article/view/10035deep learningtransfer learningclassificationhyperparameter tuningcoffee beans
spellingShingle Aryo Michael
Juprianus Rusman
Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
Jurnal Teknologi dan Manajemen Informatika
deep learning
transfer learning
classification
hyperparameter tuning
coffee beans
title Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
title_full Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
title_fullStr Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
title_full_unstemmed Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
title_short Klasifikasi Cacat Biji Kopi Menggunakan Metode Transfer Learning dengan Hyperparameter Tuning Gridsearch
title_sort klasifikasi cacat biji kopi menggunakan metode transfer learning dengan hyperparameter tuning gridsearch
topic deep learning
transfer learning
classification
hyperparameter tuning
coffee beans
url https://jurnal.unmer.ac.id/index.php/jtmi/article/view/10035
work_keys_str_mv AT aryomichael klasifikasicacatbijikopimenggunakanmetodetransferlearningdenganhyperparametertuninggridsearch
AT juprianusrusman klasifikasicacatbijikopimenggunakanmetodetransferlearningdenganhyperparametertuninggridsearch