Effects of operational parameters on methyl tert-butyl ether removal by permeable reactive barrier from polluted waters

Background: Recalcitrant organics remediation from water resources continues to be a significant environmental problem and there is a continued effort to demonstrate practicable and economical treatment options for pollution removal. Methods: In this study, the efficiency of the permeable reactiv...

Full description

Bibliographic Details
Main Authors: Farhad Ghayurdoost, Ali Assadi, Mohammad Reza Mehrasbi
Format: Article
Language:English
Published: Kerman University of Medical Sciences 2022-09-01
Series:Environmental Health Engineering and Management
Subjects:
Online Access:http://ehemj.com/article-1-1010-en.html
Description
Summary:Background: Recalcitrant organics remediation from water resources continues to be a significant environmental problem and there is a continued effort to demonstrate practicable and economical treatment options for pollution removal. Methods: In this study, the efficiency of the permeable reactive barrier (PRB) in a column reactor using zero-valent iron (ZVI) particles and sand mixture in the removal of methyl tert-butyl ether (MTBE) from aquatic phases was investigated. The system performance was MTBE removal while initial pH, reaction time, pollutant content, catalyst load, hydraulic loading rate (HLR), and the reaction rate constant were independent variables. Results: The results showed that the process efficiency decreased by increasing pH, HLR, and pollutant concentration. In this case, the optimal conditions were obtained at pH = 7, HLR = 0.23 m3/m2·d, and C0 = 1 mg/L, which achieved a remarkable removal efficiency up to 90.32%. The high nitrate concentrations and hardness as intervening factors reduced process efficiency to less than 44.61 and 51.4%, respectively. The lack of interfering factors had a considerable effect on the reaction rate of MTBE reduction, which is approximately 2.65 and 4.11 times higher than that in the presence of calcium hardness and nitrate, respectively. Conclusion: The PRB technology can be suggested as a reliable and robust system to remediate groundwater containing hydrocarbons based on filling media and hydraulic conditions.
ISSN:2423-3765
2423-4311