Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials

In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain <i>p</i>-adic invariant integrals on <inline-formula> <math display="inline"> <semantics> <msub...

Full description

Bibliographic Details
Main Authors: Dmitry V. Dolgy, Dae San Kim, Jongkyum Kwon, Taekyun Kim
Format: Article
Language:English
Published: MDPI AG 2019-07-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/11/7/847
_version_ 1818007045290328064
author Dmitry V. Dolgy
Dae San Kim
Jongkyum Kwon
Taekyun Kim
author_facet Dmitry V. Dolgy
Dae San Kim
Jongkyum Kwon
Taekyun Kim
author_sort Dmitry V. Dolgy
collection DOAJ
description In this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain <i>p</i>-adic invariant integrals on <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">Z</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>. In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.
first_indexed 2024-04-14T05:10:23Z
format Article
id doaj.art-fabe0db71b3e4a5ea7a6b9fe43f26ddc
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-14T05:10:23Z
publishDate 2019-07-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-fabe0db71b3e4a5ea7a6b9fe43f26ddc2022-12-22T02:10:36ZengMDPI AGSymmetry2073-89942019-07-0111784710.3390/sym11070847sym11070847Some Identities of Ordinary and Degenerate Bernoulli Numbers and PolynomialsDmitry V. Dolgy0Dae San Kim1Jongkyum Kwon2Taekyun Kim3Hanrimwon, Kwangwoon University, Seoul 139-701, KoreaDepartment of Mathematics, Sogang University, Seoul 121-742, KoreaDepartment of Mathematics Education and ERI, Gyeongsang National University, Jinju, Gyeongsangnamdo 52828, KoreaDepartment of Mathematics, Kwangwoon University, Seoul 139-701, KoreaIn this paper, we investigate some identities on Bernoulli numbers and polynomials and those on degenerate Bernoulli numbers and polynomials arising from certain <i>p</i>-adic invariant integrals on <inline-formula> <math display="inline"> <semantics> <msub> <mi mathvariant="double-struck">Z</mi> <mi>p</mi> </msub> </semantics> </math> </inline-formula>. In particular, we derive various expressions for the polynomials associated with integer power sums, called integer power sum polynomials and also for their degenerate versions. Further, we compute the expectations of an infinite family of random variables which involve the degenerate Stirling polynomials of the second and some value of higher-order Bernoulli polynomials.https://www.mdpi.com/2073-8994/11/7/847Bernoulli polynomialsdegenerate Bernoulli polynomialsrandom variablesp-adic invariant integral on Zpinteger power sums polynomialsStirling polynomials of the second kinddegenerate Stirling polynomials of the second kind
spellingShingle Dmitry V. Dolgy
Dae San Kim
Jongkyum Kwon
Taekyun Kim
Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
Symmetry
Bernoulli polynomials
degenerate Bernoulli polynomials
random variables
p-adic invariant integral on Zp
integer power sums polynomials
Stirling polynomials of the second kind
degenerate Stirling polynomials of the second kind
title Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
title_full Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
title_fullStr Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
title_full_unstemmed Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
title_short Some Identities of Ordinary and Degenerate Bernoulli Numbers and Polynomials
title_sort some identities of ordinary and degenerate bernoulli numbers and polynomials
topic Bernoulli polynomials
degenerate Bernoulli polynomials
random variables
p-adic invariant integral on Zp
integer power sums polynomials
Stirling polynomials of the second kind
degenerate Stirling polynomials of the second kind
url https://www.mdpi.com/2073-8994/11/7/847
work_keys_str_mv AT dmitryvdolgy someidentitiesofordinaryanddegeneratebernoullinumbersandpolynomials
AT daesankim someidentitiesofordinaryanddegeneratebernoullinumbersandpolynomials
AT jongkyumkwon someidentitiesofordinaryanddegeneratebernoullinumbersandpolynomials
AT taekyunkim someidentitiesofordinaryanddegeneratebernoullinumbersandpolynomials