Multiple Initial Point Approach to Solving Power Flows for Monte Carlo Studies

Power flow solvers typically start from an initial point of power injection. This paper constructs a system of multiple initial points (SMIP) to enable selection of an appropriate initial point, with the objective to achieve a balanced improvement in the solution speed and accuracy, for problems wit...

Full description

Bibliographic Details
Main Authors: Josh Schipper, Sharee McNab, Yuyin Kueh, Radnya Mukhedkar
Format: Article
Language:English
Published: MDPI AG 2022-09-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/19/7141
Description
Summary:Power flow solvers typically start from an initial point of power injection. This paper constructs a system of multiple initial points (SMIP) to enable selection of an appropriate initial point, with the objective to achieve a balanced improvement in the solution speed and accuracy, for problems with a large number of power flows. The intent is to recover time cost of forming the SMIP through the improvements to each power flow. The SMIP is tested on a time series based Monte Carlo study of Electric Vehicle (EV) hosting capacity in a low voltage distribution network, which has 5.4 million power flows. SMIP is applied to two power flow solvers: a Taylor series approximation and a Z-bus method. The accuracy of the quadratic Taylor series approximation was improved by a factor of 30 with a 27% increase in the solve time when compared against a single no-load initial point. A Z-bus solver with SMIP, limited to two iterations, gave the best performance for the EV hosting capacity case study.
ISSN:1996-1073