A decade of coral biobanking science in Australia - transitioning into applied reef restoration

Active restoration or intervention programs will be required in the future to support the resilience and adaptation of coral reef ecosystems in the face of climate change. Selective propagation of corals ex situ can help conserve keystone species and the ecosystems they underpin; cross-disciplinary...

Full description

Bibliographic Details
Main Authors: Rebecca J. Hobbs, Justine K. O'Brien, Line K. Bay, Andrea Severati, Rebecca Spindler, E. Michael Henley, Kate M. Quigley, Carly J. Randall, Madeleine J. H. van Oppen, Virginia Carter, Nikolas Zuchowicz, Mary Hagedorn, Jonathan Daly
Format: Article
Language:English
Published: Frontiers Media S.A. 2022-09-01
Series:Frontiers in Marine Science
Subjects:
Online Access:https://www.frontiersin.org/articles/10.3389/fmars.2022.960470/full
_version_ 1811260826871398400
author Rebecca J. Hobbs
Justine K. O'Brien
Justine K. O'Brien
Line K. Bay
Andrea Severati
Rebecca Spindler
E. Michael Henley
Kate M. Quigley
Carly J. Randall
Madeleine J. H. van Oppen
Madeleine J. H. van Oppen
Virginia Carter
Virginia Carter
Nikolas Zuchowicz
Nikolas Zuchowicz
Mary Hagedorn
Mary Hagedorn
Jonathan Daly
Jonathan Daly
Jonathan Daly
Jonathan Daly
author_facet Rebecca J. Hobbs
Justine K. O'Brien
Justine K. O'Brien
Line K. Bay
Andrea Severati
Rebecca Spindler
E. Michael Henley
Kate M. Quigley
Carly J. Randall
Madeleine J. H. van Oppen
Madeleine J. H. van Oppen
Virginia Carter
Virginia Carter
Nikolas Zuchowicz
Nikolas Zuchowicz
Mary Hagedorn
Mary Hagedorn
Jonathan Daly
Jonathan Daly
Jonathan Daly
Jonathan Daly
author_sort Rebecca J. Hobbs
collection DOAJ
description Active restoration or intervention programs will be required in the future to support the resilience and adaptation of coral reef ecosystems in the face of climate change. Selective propagation of corals ex situ can help conserve keystone species and the ecosystems they underpin; cross-disciplinary research and communication between science and industry are essential to this success. Zoos and aquaria have a long history of managing ex situ breed-for-release programs and have led the establishment of wildlife biobanks (collections of cryopreserved living cells) along with the development of associated reproductive technologies for their application to wildlife conservation. Taronga Conservation Society Australia’s CryoDiversity Bank includes cryopreserved coral sperm from the Great Barrier Reef, which represents the largest repository from any reef system around the globe. This paper presents results from an inventory review of the current collection. The review highlighted the skew toward five Acropora species and the necessity to increase the taxonomic diversity of the collection. It also highlighted the need to increase geographic representation, even for the most well represented species. The inventory data will inform Taronga’s future research focus and sampling strategy to maximize genetic variation and biodiversity within the biobank and provide a test case for other practitioners implementing biobanking strategies for coral conservation around the world. Through co-investment and collaboration with research partners over the next decade, Taronga will prioritize and resource critical applied research and expand biobanking efforts to assist interventions for reef recovery and restoration.
first_indexed 2024-04-12T18:53:28Z
format Article
id doaj.art-fac06ec8419e430cb88662f0b3517a66
institution Directory Open Access Journal
issn 2296-7745
language English
last_indexed 2024-04-12T18:53:28Z
publishDate 2022-09-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Marine Science
spelling doaj.art-fac06ec8419e430cb88662f0b3517a662022-12-22T03:20:24ZengFrontiers Media S.A.Frontiers in Marine Science2296-77452022-09-01910.3389/fmars.2022.960470960470A decade of coral biobanking science in Australia - transitioning into applied reef restorationRebecca J. Hobbs0Justine K. O'Brien1Justine K. O'Brien2Line K. Bay3Andrea Severati4Rebecca Spindler5E. Michael Henley6Kate M. Quigley7Carly J. Randall8Madeleine J. H. van Oppen9Madeleine J. H. van Oppen10Virginia Carter11Virginia Carter12Nikolas Zuchowicz13Nikolas Zuchowicz14Mary Hagedorn15Mary Hagedorn16Jonathan Daly17Jonathan Daly18Jonathan Daly19Jonathan Daly20Taronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, AustraliaTaronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, AustraliaSchool of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaAustralian Institute of Marine Science, Townsville, QLD, AustraliaAustralian Institute of Marine Science, Townsville, QLD, AustraliaBush Heritage Australia, Melbourne, VIC, AustraliaHawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United StatesMinderoo Foundation and University of Western Australia - Oceans Institute, University of Western Australia, Perth, WA, AustraliaAustralian Institute of Marine Science, Townsville, QLD, AustraliaAustralian Institute of Marine Science, Townsville, QLD, AustraliaSchool of BioSciences, Melbourne University, Parkville, VIC, AustraliaHawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United StatesCenter for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, United StatesHawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United StatesCenter for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, United StatesHawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United StatesCenter for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, United StatesTaronga Institute of Science and Learning, Taronga Conservation Society Australia, Mosman, NSW, AustraliaSchool of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, AustraliaHawaii Institute of Marine Biology, University of Hawaii, Kaneohe, HI, United StatesCenter for Species Survival, Smithsonian Conservation Biology Institute, Smithsonian Institution, Front Royal, VA, United StatesActive restoration or intervention programs will be required in the future to support the resilience and adaptation of coral reef ecosystems in the face of climate change. Selective propagation of corals ex situ can help conserve keystone species and the ecosystems they underpin; cross-disciplinary research and communication between science and industry are essential to this success. Zoos and aquaria have a long history of managing ex situ breed-for-release programs and have led the establishment of wildlife biobanks (collections of cryopreserved living cells) along with the development of associated reproductive technologies for their application to wildlife conservation. Taronga Conservation Society Australia’s CryoDiversity Bank includes cryopreserved coral sperm from the Great Barrier Reef, which represents the largest repository from any reef system around the globe. This paper presents results from an inventory review of the current collection. The review highlighted the skew toward five Acropora species and the necessity to increase the taxonomic diversity of the collection. It also highlighted the need to increase geographic representation, even for the most well represented species. The inventory data will inform Taronga’s future research focus and sampling strategy to maximize genetic variation and biodiversity within the biobank and provide a test case for other practitioners implementing biobanking strategies for coral conservation around the world. Through co-investment and collaboration with research partners over the next decade, Taronga will prioritize and resource critical applied research and expand biobanking efforts to assist interventions for reef recovery and restoration.https://www.frontiersin.org/articles/10.3389/fmars.2022.960470/fullreef restorationcryopreservationbiobankingcoral spawningcoral
spellingShingle Rebecca J. Hobbs
Justine K. O'Brien
Justine K. O'Brien
Line K. Bay
Andrea Severati
Rebecca Spindler
E. Michael Henley
Kate M. Quigley
Carly J. Randall
Madeleine J. H. van Oppen
Madeleine J. H. van Oppen
Virginia Carter
Virginia Carter
Nikolas Zuchowicz
Nikolas Zuchowicz
Mary Hagedorn
Mary Hagedorn
Jonathan Daly
Jonathan Daly
Jonathan Daly
Jonathan Daly
A decade of coral biobanking science in Australia - transitioning into applied reef restoration
Frontiers in Marine Science
reef restoration
cryopreservation
biobanking
coral spawning
coral
title A decade of coral biobanking science in Australia - transitioning into applied reef restoration
title_full A decade of coral biobanking science in Australia - transitioning into applied reef restoration
title_fullStr A decade of coral biobanking science in Australia - transitioning into applied reef restoration
title_full_unstemmed A decade of coral biobanking science in Australia - transitioning into applied reef restoration
title_short A decade of coral biobanking science in Australia - transitioning into applied reef restoration
title_sort decade of coral biobanking science in australia transitioning into applied reef restoration
topic reef restoration
cryopreservation
biobanking
coral spawning
coral
url https://www.frontiersin.org/articles/10.3389/fmars.2022.960470/full
work_keys_str_mv AT rebeccajhobbs adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT justinekobrien adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT justinekobrien adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT linekbay adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT andreaseverati adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT rebeccaspindler adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT emichaelhenley adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT katemquigley adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT carlyjrandall adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT madeleinejhvanoppen adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT madeleinejhvanoppen adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT virginiacarter adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT virginiacarter adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT nikolaszuchowicz adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT nikolaszuchowicz adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT maryhagedorn adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT maryhagedorn adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly adecadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT rebeccajhobbs decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT justinekobrien decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT justinekobrien decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT linekbay decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT andreaseverati decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT rebeccaspindler decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT emichaelhenley decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT katemquigley decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT carlyjrandall decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT madeleinejhvanoppen decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT madeleinejhvanoppen decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT virginiacarter decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT virginiacarter decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT nikolaszuchowicz decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT nikolaszuchowicz decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT maryhagedorn decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT maryhagedorn decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration
AT jonathandaly decadeofcoralbiobankingscienceinaustraliatransitioningintoappliedreefrestoration