Weak and contradictory effects of self-medication with nectar nicotine by parasitized bumblebees [v1; ref status: indexed, http://f1000r.es/56l]

The presence of antimicrobial secondary metabolites in nectar suggests that pollinators, which are threatened globally by emergent disease, may benefit from the consumption of nectars rich in these metabolites. We tested whether nicotine, a nectar secondary metabolite common in Solenaceae and Tilia...

Full description

Bibliographic Details
Main Authors: David Baracchi, Mark J. F. Brown, Lars Chittka
Format: Article
Language:English
Published: F1000 Research Ltd 2015-03-01
Series:F1000Research
Subjects:
Online Access:http://f1000research.com/articles/4-73/v1
Description
Summary:The presence of antimicrobial secondary metabolites in nectar suggests that pollinators, which are threatened globally by emergent disease, may benefit from the consumption of nectars rich in these metabolites. We tested whether nicotine, a nectar secondary metabolite common in Solenaceae and Tilia species, is used by parasitized bumblebees as a source of self-medication, using a series of toxicological, microbiological and behavioural experiments. Caged bees infected with Crithidia bombi [TI1] had a slight preference for sucrose solution laced with the alkaloid and behavioural tests showed that the parasite infection induced an increased consumption of nicotine during foraging activity. When ingested, nicotine delayed the progression of a gut infection in bumblebees by a few days, but dietary nicotine did not clear the infection, and after 10 days the parasite load approached that of control bees. Moreover, when pathogens were exposed to the alkaloid prior to host ingestion the protozoan’s viability was not directly affected, suggesting that anti-parasite effects were relatively weak. Nicotine consumption in a single dose did not impose any cost even in food-stressed bees (starved) but the alkaloid had detrimental effects on healthy bees if consistently consumed for weeks. These toxic effects disappeared in infected bees suggesting that detoxification costs might have been counterbalanced by the advantages in slowing the progression of the infection. Nonetheless we did not find a benefit of nicotine consumption in terms of life expectancy of infected bees, making these findings difficult to interpret. Our results indicate that caution is warranted in interpreting impacts of plant metabolites on insect parasites and suggest that the conditions under which nicotine consumption provides benefits to either bees or plants remain to be identified. The contention that secondary metabolites in nectar may be under selection from pollinators, or used by plants to enhance their own reproductive success, remains to be confirmed.
ISSN:2046-1402