Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
We consider when the quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>+</mo><mi>C</mi>...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2022-12-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/15/1/40 |
Summary: | We consider when the quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>+</mo><mi>C</mi><mi>X</mi><mi>D</mi><mo>=</mo><mi>E</mi></mrow></semantics></math></inline-formula> has a reflexive (or anti-reflexive) solution with respect to a given generalized reflection matrix. We adopt a real representation method to derive the solutions when it is solvable. Moreover, we obtain the explicit expressions of the least-squares reflexive (or anti-reflexive) solutions. |
---|---|
ISSN: | 2073-8994 |