Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions

We consider when the quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>+</mo><mi>C</mi>...

Full description

Bibliographic Details
Main Authors: Xin Liu, Kaiqi Wen, Yang Zhang
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/15/1/40
_version_ 1797436928245628928
author Xin Liu
Kaiqi Wen
Yang Zhang
author_facet Xin Liu
Kaiqi Wen
Yang Zhang
author_sort Xin Liu
collection DOAJ
description We consider when the quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>+</mo><mi>C</mi><mi>X</mi><mi>D</mi><mo>=</mo><mi>E</mi></mrow></semantics></math></inline-formula> has a reflexive (or anti-reflexive) solution with respect to a given generalized reflection matrix. We adopt a real representation method to derive the solutions when it is solvable. Moreover, we obtain the explicit expressions of the least-squares reflexive (or anti-reflexive) solutions.
first_indexed 2024-03-09T11:09:38Z
format Article
id doaj.art-fae23b69c4064846a9af09a66b33648f
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-03-09T11:09:38Z
publishDate 2022-12-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-fae23b69c4064846a9af09a66b33648f2023-12-01T00:50:51ZengMDPI AGSymmetry2073-89942022-12-011514010.3390/sym15010040Matrix Equation’s Reflexive and Anti-Reflexive Solutions over QuaternionsXin Liu0Kaiqi Wen1Yang Zhang2Macau Institute of Systems Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Macau 999078, ChinaMacau Institute of Systems Engineering, Faculty of Innovation Engineering, Macau University of Science and Technology, Avenida Wai Long, Macau 999078, ChinaDepartment of Mathematics, University of Manitoba, Winnipeg, MB R3T 2N2, CanadaWe consider when the quaternion matrix equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>A</mi><mi>X</mi><mi>B</mi><mo>+</mo><mi>C</mi><mi>X</mi><mi>D</mi><mo>=</mo><mi>E</mi></mrow></semantics></math></inline-formula> has a reflexive (or anti-reflexive) solution with respect to a given generalized reflection matrix. We adopt a real representation method to derive the solutions when it is solvable. Moreover, we obtain the explicit expressions of the least-squares reflexive (or anti-reflexive) solutions.https://www.mdpi.com/2073-8994/15/1/40reflexive matrixanti-reflexive matrixquaternion matrix equationreal representation
spellingShingle Xin Liu
Kaiqi Wen
Yang Zhang
Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
Symmetry
reflexive matrix
anti-reflexive matrix
quaternion matrix equation
real representation
title Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
title_full Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
title_fullStr Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
title_full_unstemmed Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
title_short Matrix Equation’s Reflexive and Anti-Reflexive Solutions over Quaternions
title_sort matrix equation s reflexive and anti reflexive solutions over quaternions
topic reflexive matrix
anti-reflexive matrix
quaternion matrix equation
real representation
url https://www.mdpi.com/2073-8994/15/1/40
work_keys_str_mv AT xinliu matrixequationsreflexiveandantireflexivesolutionsoverquaternions
AT kaiqiwen matrixequationsreflexiveandantireflexivesolutionsoverquaternions
AT yangzhang matrixequationsreflexiveandantireflexivesolutionsoverquaternions