Lysophosphatidic Acid Promotes Epithelial to Mesenchymal Transition in Ovarian Cancer Cells by Repressing SIRT1

Background/Aims: Epithelial-to-mesenchymal transition (EMT) plays an essential role in the transition from early to invasive phenotype, however the underlying mechanisms still remain elusive. Herein, we propose a mechanism through which the class-III deacetylase SIRT1 regulates EMT in ovarian cancer...

Full description

Bibliographic Details
Main Authors: Upasana Ray, Sib Sankar Roy, Shreya Roy Chowdhury
Format: Article
Language:English
Published: Cell Physiol Biochem Press GmbH & Co KG 2017-02-01
Series:Cellular Physiology and Biochemistry
Subjects:
Online Access:http://www.karger.com/Article/FullText/458744
Description
Summary:Background/Aims: Epithelial-to-mesenchymal transition (EMT) plays an essential role in the transition from early to invasive phenotype, however the underlying mechanisms still remain elusive. Herein, we propose a mechanism through which the class-III deacetylase SIRT1 regulates EMT in ovarian cancer (OC) cells. Methods: Expression analysis was performed using Q-PCR, western blot, immunofluorescence and fluorescence-IHC study. Matrigel invasion assay was used for the invasion study. Morphological alterations were observed by phalloidin-staining. Co-immunoprecipitation study was performed to analyze protein-protein interaction. Results: Overexpression of SIRT1-WT as well as Resveratrol-mediated SIRT1 activation antagonized the invasion of OC cells by suppressing EMT. SIRT1 deacetylates HIF1α, to inactivate its transcriptional activity. To further validate HIF1α inactivation, its target gene, i.e. ZEB1, an EMT-inducing factor was found to attenuate upon SIRT1 activation. To uncover the regulatory factor governing SIRT1 expression, lysophosphatidic acid (LPA), a highly enriched oncolipid in ascites/serum of OC patients, was found to down-regulate SIRT1 expression. Importantly, LPA was found to induce the mesenchymal switch in OC cells through suppression of SIRT1. Decreased level of SIRT1 was further validated in ovarian tissue samples of OC patients. Conclusion: We have identified a mechanism that relates SIRT1 down-regulation to LPA-induced EMT in OC cells and may open new arenas on developing novel anti-cancer therapeutics.
ISSN:1015-8987
1421-9778