Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission

Abstract Background Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from COVID-19 using patient data at admission, but little is known on how their performance compares with each other and/or with statistical logistic regression (LR). This prospective...

Full description

Bibliographic Details
Main Authors: Aaron W. Sievering, Peter Wohlmuth, Nele Geßler, Melanie A. Gunawardene, Klaus Herrlinger, Berthold Bein, Dirk Arnold, Martin Bergmann, Lorenz Nowak, Christian Gloeckner, Ina Koch, Martin Bachmann, Christoph U. Herborn, Axel Stang
Format: Article
Language:English
Published: BMC 2022-11-01
Series:BMC Medical Informatics and Decision Making
Subjects:
Online Access:https://doi.org/10.1186/s12911-022-02057-4
_version_ 1811315564255117312
author Aaron W. Sievering
Peter Wohlmuth
Nele Geßler
Melanie A. Gunawardene
Klaus Herrlinger
Berthold Bein
Dirk Arnold
Martin Bergmann
Lorenz Nowak
Christian Gloeckner
Ina Koch
Martin Bachmann
Christoph U. Herborn
Axel Stang
author_facet Aaron W. Sievering
Peter Wohlmuth
Nele Geßler
Melanie A. Gunawardene
Klaus Herrlinger
Berthold Bein
Dirk Arnold
Martin Bergmann
Lorenz Nowak
Christian Gloeckner
Ina Koch
Martin Bachmann
Christoph U. Herborn
Axel Stang
author_sort Aaron W. Sievering
collection DOAJ
description Abstract Background Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from COVID-19 using patient data at admission, but little is known on how their performance compares with each other and/or with statistical logistic regression (LR). This prospective multicentre cohort study compares the performance of a LR and five ML models on the contribution of influencing predictors and predictor-to-event relationships on prediction model´s performance. Methods We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March–November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). Models were compared for performance (area-under-the-receiver-operating characteristic-curve [AUC], Brier score) and predictor importance (performance-loss metrics, partial-dependence profiles). Results Models performed close with a small benefit for LR (utilizing restricted cubic splines for non-linearity) and RF (AUC means: 0.763–0.731 [RF–L1]); Brier scores: 0.184–0.197 [LR–L1]). Top ranked predictor variables (consistently highest importance: C-reactive protein) were largely identical across models, except creatinine, which exhibited marginal (L1, L2, EN, SVM) or high/non-linear effects (LR, RF) on events. Conclusions Although the LR and ML models analysed showed no strong differences in performance and the most influencing predictors for COVID-19-related event prediction, our results indicate a predictive benefit from taking account for non-linear predictor-to-event relationships and effects. Future efforts should focus on leveraging data-driven ML technologies from static towards dynamic modelling solutions that continuously learn and adapt to changes in data environments during the evolving pandemic. Trial registration number: NCT04659187.
first_indexed 2024-04-13T11:32:31Z
format Article
id doaj.art-faf7bce8af36413089cdfd88cfc2965c
institution Directory Open Access Journal
issn 1472-6947
language English
last_indexed 2024-04-13T11:32:31Z
publishDate 2022-11-01
publisher BMC
record_format Article
series BMC Medical Informatics and Decision Making
spelling doaj.art-faf7bce8af36413089cdfd88cfc2965c2022-12-22T02:48:32ZengBMCBMC Medical Informatics and Decision Making1472-69472022-11-0122111410.1186/s12911-022-02057-4Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admissionAaron W. Sievering0Peter Wohlmuth1Nele Geßler2Melanie A. Gunawardene3Klaus Herrlinger4Berthold Bein5Dirk Arnold6Martin Bergmann7Lorenz Nowak8Christian Gloeckner9Ina Koch10Martin Bachmann11Christoph U. Herborn12Axel Stang13Semmelweis UniversitySemmelweis UniversitySemmelweis UniversityDepartment of Cardiology and Intensive Care Medicine, Asklepios Hospital St. GeorgDepartment of Internal Medicine, Asklepios Hospital Nord-HeidbergDepartment of Anesthesiology and Intensive Care Medicine, Asklepios Hospital St. GeorgAsklepios TumorzentrumDepartment of Internal Medicine, Cardiology, and Pneumology, Asklepios Hospital WandsbekDepartment of Intensive Care and Ventilation Medicine, Asklepios Hospital München-GautingDepartment of Internal Medicine, Asklepios Hospital OberviechtachBiobank for Pulmonary Diseases, Asklepios Hospital München-GautingDepartment of Intensive Care and Ventilatory Medicine, Asklepios Hospital HarburgSemmelweis UniversitySemmelweis UniversityAbstract Background Machine learning (ML) algorithms have been trained to early predict critical in-hospital events from COVID-19 using patient data at admission, but little is known on how their performance compares with each other and/or with statistical logistic regression (LR). This prospective multicentre cohort study compares the performance of a LR and five ML models on the contribution of influencing predictors and predictor-to-event relationships on prediction model´s performance. Methods We used 25 baseline variables of 490 COVID-19 patients admitted to 8 hospitals in Germany (March–November 2020) to develop and validate (75/25 random-split) 3 linear (L1 and L2 penalty, elastic net [EN]) and 2 non-linear (support vector machine [SVM] with radial kernel, random forest [RF]) ML approaches for predicting critical events defined by intensive care unit transfer, invasive ventilation and/or death (composite end-point: 181 patients). Models were compared for performance (area-under-the-receiver-operating characteristic-curve [AUC], Brier score) and predictor importance (performance-loss metrics, partial-dependence profiles). Results Models performed close with a small benefit for LR (utilizing restricted cubic splines for non-linearity) and RF (AUC means: 0.763–0.731 [RF–L1]); Brier scores: 0.184–0.197 [LR–L1]). Top ranked predictor variables (consistently highest importance: C-reactive protein) were largely identical across models, except creatinine, which exhibited marginal (L1, L2, EN, SVM) or high/non-linear effects (LR, RF) on events. Conclusions Although the LR and ML models analysed showed no strong differences in performance and the most influencing predictors for COVID-19-related event prediction, our results indicate a predictive benefit from taking account for non-linear predictor-to-event relationships and effects. Future efforts should focus on leveraging data-driven ML technologies from static towards dynamic modelling solutions that continuously learn and adapt to changes in data environments during the evolving pandemic. Trial registration number: NCT04659187.https://doi.org/10.1186/s12911-022-02057-4COVID-19Machine learningPredictive modelsCritical event predictionClinical decision-making
spellingShingle Aaron W. Sievering
Peter Wohlmuth
Nele Geßler
Melanie A. Gunawardene
Klaus Herrlinger
Berthold Bein
Dirk Arnold
Martin Bergmann
Lorenz Nowak
Christian Gloeckner
Ina Koch
Martin Bachmann
Christoph U. Herborn
Axel Stang
Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
BMC Medical Informatics and Decision Making
COVID-19
Machine learning
Predictive models
Critical event prediction
Clinical decision-making
title Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
title_full Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
title_fullStr Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
title_full_unstemmed Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
title_short Comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in-hospital events in COVID-19 patients on hospital admission
title_sort comparison of machine learning methods with logistic regression analysis in creating predictive models for risk of critical in hospital events in covid 19 patients on hospital admission
topic COVID-19
Machine learning
Predictive models
Critical event prediction
Clinical decision-making
url https://doi.org/10.1186/s12911-022-02057-4
work_keys_str_mv AT aaronwsievering comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT peterwohlmuth comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT nelegeßler comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT melanieagunawardene comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT klausherrlinger comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT bertholdbein comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT dirkarnold comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT martinbergmann comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT lorenznowak comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT christiangloeckner comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT inakoch comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT martinbachmann comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT christophuherborn comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission
AT axelstang comparisonofmachinelearningmethodswithlogisticregressionanalysisincreatingpredictivemodelsforriskofcriticalinhospitaleventsincovid19patientsonhospitaladmission