Decomposable graphs and definitions with no quantifier alternation

Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in...

Full description

Bibliographic Details
Main Authors: Oleg Pikhurko, Joel Spencer, Oleg Verbitsky
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2005-01-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/3423/pdf
_version_ 1797270392532893696
author Oleg Pikhurko
Joel Spencer
Oleg Verbitsky
author_facet Oleg Pikhurko
Joel Spencer
Oleg Verbitsky
author_sort Oleg Pikhurko
collection DOAJ
description Let $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.
first_indexed 2024-04-25T02:03:32Z
format Article
id doaj.art-fb0c56348c134d5f968912580ececb1f
institution Directory Open Access Journal
issn 1365-8050
language English
last_indexed 2024-04-25T02:03:32Z
publishDate 2005-01-01
publisher Discrete Mathematics & Theoretical Computer Science
record_format Article
series Discrete Mathematics & Theoretical Computer Science
spelling doaj.art-fb0c56348c134d5f968912580ececb1f2024-03-07T14:41:15ZengDiscrete Mathematics & Theoretical Computer ScienceDiscrete Mathematics & Theoretical Computer Science1365-80502005-01-01DMTCS Proceedings vol. AE,...Proceedings10.46298/dmtcs.34233423Decomposable graphs and definitions with no quantifier alternationOleg Pikhurko0https://orcid.org/0000-0002-9524-1901Joel Spencer1Oleg Verbitsky2https://orcid.org/0000-0002-9524-1901Department of Mathematical SciencesCourant Institute of Mathematical Sciences [New York]Institut fur InformatikLet $D(G)$ be the minimum quantifier depth of a first order sentence $\Phi$ that defines a graph $G$ up to isomorphism in terms of the adjacency and the equality relations. Let $D_0(G)$ be a variant of $D(G)$ where we do not allow quantifier alternations in $\Phi$. Using large graphs decomposable in complement-connected components by a short sequence of serial and parallel decompositions, we show examples of $G$ on $n$ vertices with $D_0(G) \leq 2 \log^{\ast}n+O(1)$. On the other hand, we prove a lower bound $D_0(G) \geq \log^{\ast}n-\log^{\ast}\log^{\ast}n-O(1)$ for all $G$. Here $\log^{\ast}n$ is equal to the minimum number of iterations of the binary logarithm needed to bring $n$ below $1$.https://dmtcs.episciences.org/3423/pdfdescriptive complexity of graphsfirst order logicehrenfeucht game on graphsgraph decompositions[info.info-dm] computer science [cs]/discrete mathematics [cs.dm][math.math-co] mathematics [math]/combinatorics [math.co]
spellingShingle Oleg Pikhurko
Joel Spencer
Oleg Verbitsky
Decomposable graphs and definitions with no quantifier alternation
Discrete Mathematics & Theoretical Computer Science
descriptive complexity of graphs
first order logic
ehrenfeucht game on graphs
graph decompositions
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
title Decomposable graphs and definitions with no quantifier alternation
title_full Decomposable graphs and definitions with no quantifier alternation
title_fullStr Decomposable graphs and definitions with no quantifier alternation
title_full_unstemmed Decomposable graphs and definitions with no quantifier alternation
title_short Decomposable graphs and definitions with no quantifier alternation
title_sort decomposable graphs and definitions with no quantifier alternation
topic descriptive complexity of graphs
first order logic
ehrenfeucht game on graphs
graph decompositions
[info.info-dm] computer science [cs]/discrete mathematics [cs.dm]
[math.math-co] mathematics [math]/combinatorics [math.co]
url https://dmtcs.episciences.org/3423/pdf
work_keys_str_mv AT olegpikhurko decomposablegraphsanddefinitionswithnoquantifieralternation
AT joelspencer decomposablegraphsanddefinitionswithnoquantifieralternation
AT olegverbitsky decomposablegraphsanddefinitionswithnoquantifieralternation