FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS

<p>We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henc...

Full description

Bibliographic Details
Main Authors: C. Kühnlein, W. Deconinck, R. Klein, S. Malardel, Z. P. Piotrowski, P. K. Smolarkiewicz, J. Szmelter, N. P. Wedi
Format: Article
Language:English
Published: Copernicus Publications 2019-02-01
Series:Geoscientific Model Development
Online Access:https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf
_version_ 1828494686889705472
author C. Kühnlein
W. Deconinck
R. Klein
S. Malardel
S. Malardel
Z. P. Piotrowski
P. K. Smolarkiewicz
J. Szmelter
N. P. Wedi
author_facet C. Kühnlein
W. Deconinck
R. Klein
S. Malardel
S. Malardel
Z. P. Piotrowski
P. K. Smolarkiewicz
J. Szmelter
N. P. Wedi
author_sort C. Kühnlein
collection DOAJ
description <p>We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS.</p> <p>We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.</p>
first_indexed 2024-12-11T12:00:26Z
format Article
id doaj.art-fb11b3602285484ea268a762ec42e6a6
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-12-11T12:00:26Z
publishDate 2019-02-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-fb11b3602285484ea268a762ec42e6a62022-12-22T01:08:05ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-02-011265167610.5194/gmd-12-651-2019FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFSC. Kühnlein0W. Deconinck1R. Klein2S. Malardel3S. Malardel4Z. P. Piotrowski5P. K. Smolarkiewicz6J. Szmelter7N. P. Wedi8European Centre for Medium-Range Weather Forecasts, Reading, UKEuropean Centre for Medium-Range Weather Forecasts, Reading, UKFB Mathematik und Informatik, Freie Universität Berlin, Berlin, GermanyEuropean Centre for Medium-Range Weather Forecasts, Reading, UKLaboratoire de l'Atmosphére et des Cyclones, Météo-France, La Reunion, FranceInstitute of Meteorology and Water Management – National Research Institute, Warsaw, PolandEuropean Centre for Medium-Range Weather Forecasts, Reading, UKLoughborough University, Leicestershire, LE11 3TU, UKEuropean Centre for Medium-Range Weather Forecasts, Reading, UK<p>We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS.</p> <p>We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.</p>https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf
spellingShingle C. Kühnlein
W. Deconinck
R. Klein
S. Malardel
S. Malardel
Z. P. Piotrowski
P. K. Smolarkiewicz
J. Szmelter
N. P. Wedi
FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
Geoscientific Model Development
title FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
title_full FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
title_fullStr FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
title_full_unstemmed FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
title_short FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
title_sort fvm 1 0 a nonhydrostatic finite volume dynamical core for the ifs
url https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf
work_keys_str_mv AT ckuhnlein fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT wdeconinck fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT rklein fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT smalardel fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT smalardel fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT zppiotrowski fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT pksmolarkiewicz fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT jszmelter fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs
AT npwedi fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs