FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS
<p>We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henc...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-02-01
|
Series: | Geoscientific Model Development |
Online Access: | https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf |
_version_ | 1828494686889705472 |
---|---|
author | C. Kühnlein W. Deconinck R. Klein S. Malardel S. Malardel Z. P. Piotrowski P. K. Smolarkiewicz J. Szmelter N. P. Wedi |
author_facet | C. Kühnlein W. Deconinck R. Klein S. Malardel S. Malardel Z. P. Piotrowski P. K. Smolarkiewicz J. Szmelter N. P. Wedi |
author_sort | C. Kühnlein |
collection | DOAJ |
description | <p>We present a nonhydrostatic finite-volume global atmospheric model
formulation for numerical weather prediction with the Integrated Forecasting
System (IFS) at ECMWF and compare it to the established operational
spectral-transform formulation. The novel Finite-Volume Module of the IFS
(henceforth IFS-FVM) integrates the fully compressible equations using
semi-implicit time stepping and non-oscillatory forward-in-time (NFT)
Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic
primitive equations (optionally the fully compressible equations) using a
semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the
spectral-transform counterpart by means of the finite-volume discretization
with a local low-volume communication footprint, fully conservative and
monotone advective transport, all-scale deep-atmosphere fully compressible
equations in a generalized height-based vertical coordinate, and flexible
horizontal meshes. Nevertheless, both the finite-volume and
spectral-transform formulations can share the same quasi-uniform horizontal
grid with co-located arrangement of variables, geospherical
longitude–latitude coordinates, and physics parameterizations, thereby
facilitating their comparison, coexistence, and combination in the IFS.</p>
<p>We highlight the advanced semi-implicit NFT finite-volume integration of the
fully compressible equations of IFS-FVM considering comprehensive
moist-precipitating dynamics with coupling to the IFS cloud parameterization
by means of a generic interface. These developments – including a new
horizontal–vertical split NFT MPDATA advective transport scheme, variable
time stepping, effective preconditioning of the elliptic Helmholtz solver in
the semi-implicit scheme, and a computationally efficient implementation of
the median-dual finite-volume approach – provide a basis for the efficacy of
IFS-FVM and its application in global numerical weather prediction. Here,
numerical experiments focus on relevant dry and moist-precipitating
baroclinic instability at various resolutions. We show that the presented
semi-implicit NFT finite-volume integration scheme on co-located meshes of
IFS-FVM can provide highly competitive solution quality and computational
performance to the proven semi-implicit semi-Lagrangian integration scheme of
the spectral-transform IFS.</p> |
first_indexed | 2024-12-11T12:00:26Z |
format | Article |
id | doaj.art-fb11b3602285484ea268a762ec42e6a6 |
institution | Directory Open Access Journal |
issn | 1991-959X 1991-9603 |
language | English |
last_indexed | 2024-12-11T12:00:26Z |
publishDate | 2019-02-01 |
publisher | Copernicus Publications |
record_format | Article |
series | Geoscientific Model Development |
spelling | doaj.art-fb11b3602285484ea268a762ec42e6a62022-12-22T01:08:05ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032019-02-011265167610.5194/gmd-12-651-2019FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFSC. Kühnlein0W. Deconinck1R. Klein2S. Malardel3S. Malardel4Z. P. Piotrowski5P. K. Smolarkiewicz6J. Szmelter7N. P. Wedi8European Centre for Medium-Range Weather Forecasts, Reading, UKEuropean Centre for Medium-Range Weather Forecasts, Reading, UKFB Mathematik und Informatik, Freie Universität Berlin, Berlin, GermanyEuropean Centre for Medium-Range Weather Forecasts, Reading, UKLaboratoire de l'Atmosphére et des Cyclones, Météo-France, La Reunion, FranceInstitute of Meteorology and Water Management – National Research Institute, Warsaw, PolandEuropean Centre for Medium-Range Weather Forecasts, Reading, UKLoughborough University, Leicestershire, LE11 3TU, UKEuropean Centre for Medium-Range Weather Forecasts, Reading, UK<p>We present a nonhydrostatic finite-volume global atmospheric model formulation for numerical weather prediction with the Integrated Forecasting System (IFS) at ECMWF and compare it to the established operational spectral-transform formulation. The novel Finite-Volume Module of the IFS (henceforth IFS-FVM) integrates the fully compressible equations using semi-implicit time stepping and non-oscillatory forward-in-time (NFT) Eulerian advection, whereas the spectral-transform IFS solves the hydrostatic primitive equations (optionally the fully compressible equations) using a semi-implicit semi-Lagrangian scheme. The IFS-FVM complements the spectral-transform counterpart by means of the finite-volume discretization with a local low-volume communication footprint, fully conservative and monotone advective transport, all-scale deep-atmosphere fully compressible equations in a generalized height-based vertical coordinate, and flexible horizontal meshes. Nevertheless, both the finite-volume and spectral-transform formulations can share the same quasi-uniform horizontal grid with co-located arrangement of variables, geospherical longitude–latitude coordinates, and physics parameterizations, thereby facilitating their comparison, coexistence, and combination in the IFS.</p> <p>We highlight the advanced semi-implicit NFT finite-volume integration of the fully compressible equations of IFS-FVM considering comprehensive moist-precipitating dynamics with coupling to the IFS cloud parameterization by means of a generic interface. These developments – including a new horizontal–vertical split NFT MPDATA advective transport scheme, variable time stepping, effective preconditioning of the elliptic Helmholtz solver in the semi-implicit scheme, and a computationally efficient implementation of the median-dual finite-volume approach – provide a basis for the efficacy of IFS-FVM and its application in global numerical weather prediction. Here, numerical experiments focus on relevant dry and moist-precipitating baroclinic instability at various resolutions. We show that the presented semi-implicit NFT finite-volume integration scheme on co-located meshes of IFS-FVM can provide highly competitive solution quality and computational performance to the proven semi-implicit semi-Lagrangian integration scheme of the spectral-transform IFS.</p>https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf |
spellingShingle | C. Kühnlein W. Deconinck R. Klein S. Malardel S. Malardel Z. P. Piotrowski P. K. Smolarkiewicz J. Szmelter N. P. Wedi FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS Geoscientific Model Development |
title | FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS |
title_full | FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS |
title_fullStr | FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS |
title_full_unstemmed | FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS |
title_short | FVM 1.0: a nonhydrostatic finite-volume dynamical core for the IFS |
title_sort | fvm 1 0 a nonhydrostatic finite volume dynamical core for the ifs |
url | https://www.geosci-model-dev.net/12/651/2019/gmd-12-651-2019.pdf |
work_keys_str_mv | AT ckuhnlein fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT wdeconinck fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT rklein fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT smalardel fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT smalardel fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT zppiotrowski fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT pksmolarkiewicz fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT jszmelter fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs AT npwedi fvm10anonhydrostaticfinitevolumedynamicalcorefortheifs |