Dynamical density wave order in an atom–cavity system

We theoretically and experimentally explore the emergence of a dynamical density wave (DW) order in a driven dissipative atom–cavity system. A Bose–Einstein condensate is placed inside a high finesse optical resonator and pumped sideways by an optical standing wave. The pump strength is chosen to in...

Full description

Bibliographic Details
Main Authors: Christoph Georges, Jayson G Cosme, Hans Keßler, Ludwig Mathey, Andreas Hemmerich
Format: Article
Language:English
Published: IOP Publishing 2021-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/abdf9c
Description
Summary:We theoretically and experimentally explore the emergence of a dynamical density wave (DW) order in a driven dissipative atom–cavity system. A Bose–Einstein condensate is placed inside a high finesse optical resonator and pumped sideways by an optical standing wave. The pump strength is chosen to induce a stationary superradiant checkerboard DW order of the atoms stabilized by a strong intracavity light field. We show theoretically that, when the pump is modulated with sufficient strength at a frequency ω _d close to a systemic resonance frequency ω _> , a dynamical DW order emerges, which oscillates at the two frequencies ω _> and ω _< = ω _d − ω _> . This order is associated with a characteristic momentum spectrum, also found in experiments in addition to remnants of the oscillatory dynamics presumably damped by on-site interaction and heating, not included in the calculations. The oscillating density grating, associated with this order, suppresses pump-induced light scattering into the cavity. Similar mechanisms might be conceivable in light-driven electronic matter.
ISSN:1367-2630