Solar Radiation Components on a Horizontal Surface in a Tropical Coastal City of Salvador

Renewable energy must be prioritized by humankind, mainly if there is an expected increase of 50% in energy consumption by 2030 and climate change scenarios are also confirmed. Urban areas consume 70% of the available energy on the planet. Brazil, the largest country in South America, concentrates m...

Full description

Bibliographic Details
Main Authors: Leonardo Rafael Teixeira Cotrim Gomes, Edson Pereira Marques Filho, Iuri Muniz Pepe, Bruno Severino Mascarenhas, Amauri Pereira de Oliveira, José Ricardo de A. França
Format: Article
Language:English
Published: MDPI AG 2022-01-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/3/1058
Description
Summary:Renewable energy must be prioritized by humankind, mainly if there is an expected increase of 50% in energy consumption by 2030 and climate change scenarios are also confirmed. Urban areas consume 70% of the available energy on the planet. Brazil, the largest country in South America, concentrates more than 85% of its population in urban areas, facing a challenge to increase the renewable power plants in its energy matrix. This work presents the solar radiation components behavior for the city of Salvador to contribute with initiatives for the use of solar energy resource. Firstly, a radiometric platform was implemented to obtain direct measurements of global (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>G</mi></msub><mo stretchy="false">)</mo><mo> </mo></mrow></semantics></math></inline-formula>and diffuse (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>D</mi><mi>F</mi></mrow></msub><mo stretchy="false">)</mo><mo> </mo></mrow></semantics></math></inline-formula>components of incoming solar radiation at the surface. The knowledge of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>D</mi><mi>F</mi></mrow></msub></mrow></semantics></math></inline-formula> is an important requirement to support photovoltaic system projects, and there is no information on direct measurements of this component in the State of Bahia. The diffuse radiation measurement device (DRMD) was designed and built for this purpose. The measurements of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mrow><mi>solar</mi><mtext> </mtext><mi>radiation</mi></mrow></mrow></semantics></math></inline-formula> components performed in this research were submitted to a specific quality control, statistically analyzed and used to evaluate the performance of different empirical models to represent the behavior of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>D</mi><mi>F</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> in the tropical coastal city. The results demonstrate the potential to explore solar energy in the city of Salvador, with annual values of sunshine higher than 2200 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mrow><mi mathvariant="normal">h</mi><mtext> </mtext><mi>year</mi></mrow></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and average daily intensities of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mi>G</mi></msub><mo> </mo></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>E</mi><mrow><mi>D</mi><mi>F</mi></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> equal to 18.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>MJm</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>day</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and 7.35 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>MJm</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi>day</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>,</mo><mtext> </mtext></mrow></semantics></math></inline-formula> respectively. The analysis of the diurnal cycle shows that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi mathvariant="normal">E</mi><mi mathvariant="normal">G</mi></msub><mtext> </mtext></mrow></semantics></math></inline-formula>in summer reaches a maximum of 4.2 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>MJm</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi mathvariant="normal">h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula> and in the rainy season it reaches a minimum of 3.7 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mi>MJm</mi></mrow><mrow><mo>−</mo><mn>2</mn></mrow></msup><msup><mrow><mi mathvariant="normal">h</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup></mrow></semantics></math></inline-formula>, both at noon, and in summer the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>E</mi><mrow><mi>D</mi><mi>F</mi></mrow><mi>h</mi></msubsup></mrow></semantics></math></inline-formula> is 35% of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msubsup><mi>E</mi><mi>G</mi><mi>h</mi></msubsup></mrow></semantics></math></inline-formula> and it is 46% in the rainy season.
ISSN:1996-1073